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École Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235 Cachan CEDEX, France

The University of Sheffield, Department of Civil and Structural Engineering, Sir Frederick Mappin
Building, Mappin Street, Sheffield, S1 3JD, UK

http://www.ens-cachan.fr/
http://www.sheffield.ac.uk/
http://www.dgc.ens-cachan.fr/




This work was carried out under the supervision of Dr. Jurgen Becque and Pr. Buick Davison. I am
extremely grateful for all their expert help and advice and for their continuous encouragement throughout
the project.

The whole part of this project was realised using numerical simulations. I am thankful to Dr. Michael
Croucher from the CICS team of the University for his valuable help with both Python and Iceberg.

I am also grateful to my colleagues, Hoan Truong, Ruoxi Shi, Guan Quan, Kwesi Okutu and Ali
Alskeif for valuable discussions about finite element modelling, statistics and other subjects.

Finally, I am thankful to Pr. Clément Desodt, professor at the École Normale Supérieure de Cachan,
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University presentation

The University of Sheffield (UoS), often ranked in the world top-100 universities, educates its students
in more than 50 different departments, shared among 6 faculties. The lectures and professors diversity,
combined with strong links with industries and research, form skilful graduates and postgraduates in
numerous domains. Additionally, it is a university with an international outlook, as more than 7000 out of
the 26309 students of 2014/2015 come from non-European countries1. After getting their undergraduate
degree, students can directly enter the labour market or continue their studies in Master’s (postgraduate)
and possibly complete their studies with a doctorate.

Sheffield, the fifth largest United Kingdom city by population, is located in South Yorkshire in Eng-
land. The city was famous worldwide during the 19th century for metallurgy and steel production and
next to a decline period during the 1970s and 1980s, Sheffield is now experiencing a strong revival in
its economy. Strong links between the University and the nearby various industries contribute to the
employment and innovation of the University of Sheffield students.

In the framework of my ARPE (Année Recherche Prédoctorale à l’Étranger), I am realising my re-
search internship at the University of Sheffield, in the Civil and Structural Engineering Department, part
of the Faculty of Engineering. I am affiliated to the Steel Structures group in the overarching Structures
research area. My research group is particularly interested in three main topics, covering all issues that
industries and engineers can face using either carbon steel or stainless steel:

(i) Stability of steel structures.

(ii) Steel connections.

(iii) Steel behaviour in fire.

As it will be detailed in section 1 of the Introduction chapter, this project concerns the stability issue,
and more precisely the buckling of stainless steel columns. Thus, I am jointly supervised by Prof. Buick
Davison and Dr. Jurgen Becque whose research themes interest in steel stability.

As expected, the laboratory of the Department offer all ranges of facilities require to lead experi-
mental studies linked with civil engineering. However, I am not carrying out any experimental work
here but only numerical modelling. Thus, I am using the Finite Element (FE) analysis package Abaqus
[6], installed on the HPC (High Performance Computing) facility of the University of Sheffield, called
’Iceberg’. Iceberg provides a total of 3440 CPUs cores and 16 GPUs units, allowing the users to run
computational expensive models.

1UoS 2014 figures - https://www.shef.ac.uk/departmentProfiles/instprofile/student-population/2014
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Introduction

The first industrial manufacture of stainless steel started in 1912-1913 by Maurer and Strauss in Germany
and Brearley in the United Kingdom. In its infancy, stainless steel was mainly used for household appli-
cations, like for cutlery for instance. In the 1920s, this new material expands its range of application to
automotive industry (bumpers, radiators and trim), medicine (scalpels), chemical tanks and construction
(facades and roofing). The installation of a stainless steel reinforcing chain to stabilize the dome of St.
Paul’s Cathedral in London in 1925 was one of its earliest uses in a structural project. In 1930-1931, the
simultaneous constructions of Empire State Building and Chrysler Building in New-York really launched
the use of this new material for architectural project. The top 88 meters of the latter are clad in stainless
steel (see Fig. 1) and continue to gleam brightly even though it has been cleaned only twice in its entire
life.

Figure 1: One of the early applications of stainless steel - Top of the Chrysler Building, New-York, 1931
- William van Alen Architect.

Since this early use, stainless steel has diversified its scope of usage with actual applications in
aviation, aerospace, naval construction and of course civil engineering. Indeed, thanks to its numerous
advantages, listed hereinbelow, stainless steel is an attractive answer to various structural projects. Those
attractive properties obviously depend on the microstructure of the stainless steel and can vary from one
grade to another. From a sustainable point of view, stainless steel is also indefinitely recyclable and has
a low environmental impact (see Rossi publication [7]).
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4 Introduction

(i) Excellent corrosion resistance.

(ii) High mechanical strength (from 250 to 1400 MPa).

(iii) Good fire behaviour (see Fig. 2 and recent experimental/design works [8, 9, 10, 11, 12, 13]).

(iv) Good explosion resistance, due to high ductility (a specific guide for blast-resistant structures made
in stainless steel has been published by FABIG [14]).

Figure 2: Comparison of strength retention factor ky,θ for carbon steel and stainless steel.

However, stainless steel is seldom use in structural project face to normal steel. Indeed, in 2013,
solely 5% of the 18.9 Mt stainless steel manufactured worldwide were used in construction [15, 16]
to more than 50% of the 1607 Mt world steel production [17]. The initial cost (about four times that
of carbon steel), the different stress-strain behaviour from carbon steel (Fig. 3) and the lack of design
rules are some of the factors which restrained the stainless steel development in construction before the
1980s-90s.

Figure 3: Comparison of stress-strain (σ− ε) relation for carbon steel and stainless steel.

Improvement of existing design rules for cold-formed stainless steel hollow sections under compression forces
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Aim of the study 5

Nevertheless, as explained by Gardner [18], the initial cost for a material cost comparison is not
enough relevant. A whole-life costing study conducted by The Steel Construction Institute (SCI) [19] on
offshore structures made of normal steel, aluminium and stainless steel concluded that aluminium and
stainless steel enable interesting life-cycle cost savings. Initial material cost, corrosion protection, fire
resistance, maintenance cost and other potential cost savings were considered. On the other hand, the
accelerated current development of the duplex grades (with a low nickel percentage, material that suffers
from highly speculative price) as a joint effort of industries and academics reduce the cost of stainless
steel.

Based on the general equation proposed by Ramberg and Osgood [20] and later modified by Hill [21]
(see Eq. 1 and 2), several models have been proposed by researchers [22, 23] to account for the non-usual
rounded stress-strain curve of stainless steel and are still discussed today [24, 25]. However, as stainless
steel is an anisotropic material (which emphasised whith cold-forming process), with different properties
depending on the stresses applied (see Fig. 4), care is needed in the choice of the design strength.

ε =
σ

E0
+0.002

(
σ

σ0.2

)n

(1)

n =
ln(20)

ln
(

σ0.2
σ0.01

) (2)

Figure 4: Anisotropic behaviour of stainless steel.

Finally, efforts have been made during the last decades to formulate relevant design rules. Thus,
both North-America and Europe has published their own design guidance for the use of stainless steel
in construction. However, as underlined in the next section, work is still needed in this field as all the
existing design methods are currently too conservative.

1 Aim of the study

This project is interested in the buckling of cold-formed stainless steel columns, with the formulation
of improved design rules as a final objective. Experimental studies often show disagreement between
the design rules recommendations and experimental results. Quite often, the design standards appear to
be too conservative leading to less than optimal usage of the full section to safeguard against buckling
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6 Introduction

and hence a cost increase in stainless steel construction, a problem which is exacerbated due to the price
premium paid for stainless steel compared with conventional structural steels.

The buckling design rules will be formulated using numerical results obtained from simulations.
These simulations will use Monte Carlo method to incorporate the notion of uncertainty into the numer-
ical models, which has never been done before.

Indeed, researchers quite often conduct experimental buckling tests on a set of columns and then
build a numerical model based on the experimental results. However, they tend to ’average’ some of the
input parameters of their numerical model using experimental measurements. For instance, the global
imperfection factor of a column is often entered as L/1500 in numerical models, but this value usually
varies between L/500 up to L/2000. L/1500 is only kept as studies have shown good agreement between
experimental and numerical results for this value. However, the averaging of numerous inputs could lead
to errors in the results and maybe to over-conservative results.

From this analysis, it has been decided to incorporate uncertainties in the numerical inputs in order
to accurately model stainless steel columns. The notion of uncertainty is applied using Monte Carlo
method to generate random sets of data. Thus, a numerical model has first to be build based on accurate
experimental results. Then, a large amount of simulations can be carried out using the Monte Carlo
generated inputs concurrently with the numerical model and finally, analysing statistically the results,
design rules could be formulated. Furthermore, a literature work is beforehand needed in order to get
familiar with specific properties and design rules of stainless steel. The initial given timeline for this
project is shown Table 1.

It is important to note that it has been decided to work only on square hollow sections. Indeed,
although stainless steel hollow sections are available in many shapes it is convenient to start with a sym-
metric geometry. Moreover, literature is more abundant for square hollow sections, which is important
for the construction of the numerical model.

Month Project step
October-November Literature review and familiarisation with the FE software.
December-January Building an FE model and verification against existing experimental data.
February Scripting and setting up the parametric studies.
February-May Simulations.
June Reliability analysis and design rules.
July Final report writing.

Table 1: Initial timeline of the project.

This report presents the whole work that have been realised on this project. The context and back-
ground of the study is given in Chapter 1. Thus, stainless steel grades, cold-forming effect and columns
uses and characteristics are first described. Then, design rules and methods of the European and North-
American standards applied to cold-formed stainless steel members in compression (columns) are ex-
plained. Finally, explanations on the Monte Carlo method and how it is applied to this project are given.
Chapter 2 tackles the numerical part of this project, with first a presentation of the built and validated
numerical model. Pyhton scripts and Monte Carlo data generation are explained. Finally, the Chapter 3
presents the obtained results next to the numerical simulation and the proposed design equation for the
buckling of stainless steel square hollow sections.
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Chapter 1

Context and background

This first chapter presents the frame of study of this project. Thus, the first section details the cold-formed
stainless steel grades, characteristics and uses. The existing design rules of the European and North-
American standards applied to cold-formed stainless steel columns in compression are explained in the
second section. Finally, the last section of this chapter present the issues of the Monte Carlo method
applied to this project.
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1 Cold-formed stainless steel columns

1.1 Stainless steels grades

Stainless steel is an alloy of iron (Fe), carbon (C) and a minimum of 10.5% chromium (Cr) required for
the corrosion resistance, which form a passive self-protecting layer thanks to the reaction of chromium
with oxygen. Various alloying elements are added as nickel (Ni), manganese (Mn), molybdenum (Mo),
copper (Cu), silicon (Si), sulphur (S), phosphorus (P) and nitrogen (N). Facing the alloying elements
diversity, it exist currently more than 120 stainless steel grades, classified by the EN 10088 norm [26] in
Europe (with a series of figures such as 1.4000) and by the American Iron and Steel Institute (AISI) norm
[27] in the United States (with a series of three figures). However, stainless steel are usually classified
into four main families, as listed hereinafter, corresponding to precise metallurgical structures and so to
different chemical, corrosion and strength properties. The chemical composition of each nuances are
based on ArcelorMittal data [28] with few precisions provided by Rossi [7] and Davis [29].

(i) Martensitic: 0.1 to 1.2% carbon (C), 11 to 18% chromium (Cr) and small amounts of nickel (Ni)
and manganese (Mn).

(ii) Austenitic: 0.015 to 0.10% carbon (C), 16 to 18% chromium (Cr), 8 to 13% nickel (Ni) and 0 to
4% molybdenum (Mo).

(iii) Ferritic: 0.02 to 0.06% carbon (C), 10.5 to 29% chromium (Cr) and 0 to 4% molybdenum (Mo).

(iv) Duplex or austenoferritic: less than 0.1% carbon (C), 21 to 26% chromium (Cr), 3.5 to 8% nickel
(Ni) and 0 to 4% other alloying element.

The most common grades of stainless steel in construction are austenitic, duplex and, though to a
lesser extent, ferritic. Due to the addition of carbon, martensitic grades can be hardened and strengthened
by heat treatment and are mainly used where strength is needed, as for surgical and dental instruments
for instance but are not suitable for structural projects.

Austenitic is the more customary grade of stainless steel, accounting for 70% of the world stainless
steel production. It success is historical as it was one of the first existing stainless steel grade and has been
favoured by its versatility to welding and forming. The top cladding of the Chrysler Building (Fig. 1) is,
unsurprisingly, made of austenitic stainless steel. Ferritics, as they do not contain nickel, are cheaper than
austenitics and relatively price-stable. As underlined by Cashell and Baddoo [30], though they offer good
durability and strength, ferritics are currently under-used in structural projects due to a lack of existing
information in literature and in design manuals. However, it has been used in a few ambitious structural
project such as the roofing of the Media Dome in Kitakyushu in 1998, shown Fig. 1.1 and should for
sure be more valued in the next decades. Finally, duplex or austenoferritic stainless steel is, as expected,
a combination between austenitic and ferritic grades. With a lower nickel ratio than austenitics, they are
cheaper and offer even better properties without any concessions. Thus, they are more resistant to stress
corrosion cracking (SCC) and their 0.2% proof stress is higher than the austenitic one. This high strength
enable the construction of light and aesthetics structures, as the Sölvesborgsbron (Sölvesborg Bridge) in
Sölvesborg, Sweden (Fig. 1.2). This pedestrian and cycle bridge, the longest in Europe, was completed
in 2012, using 150 tons of Outokumpu duplex stainless steel [31].

A comparison of the stress-strain curve for those three stainless steel grades is shown Fig. 1.3.
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Figure 1.1: Ferritic stainless steel application - Media Dome, Kitakyushu, 1998 - Kiyonori Kikutake
Architects.

1.2 Cold-forming processes

Cold-forming process, in opposition to hot-forming process, is the way to form and shape cross-sections
at ambient room temperature starting from coiled material sheets. This method, originally used for
carbon steel, is suitable to all the grades of stainless steel presented hereinbefore. As explained by
Cruise and Gardner [32], there are two main productions routes. The elementary one is press braking,
whereby sheets are bend between a punch and a die (Fig. 1.4(a)). This is a manually controlled process
befitting small quantities of members, suitable for angle sections. Cold rolling is a process in which
sheets are uncoiled in a series of forming rollers that gradually deform it into the desired section shape
(Fig. 1.4(b)). Larger production is possible as this is a more automated process, efficient for various
columns shapes like open or hollow sections as a result of progress in rolling techniques. Thus, square
hollow sections (SHS) and rectangular hollow sections (RHS) are produced by rolling circular hollow
sections (CHS), as visible in Fig. 1.5(a), themselves obtained from the cold-rolling of steel sheets welded
close. They can also be crushed from a CHS into the desire box shape as shown Fig. 1.5(b).

1.3 Cold-forming effects

Strength enhancements Regardless of the production route, cold-forming induce strength enhance-
ments of stainless steel sections (up to 25% on the yield and ultimate strengths according to Baddoo
[33]), reduction of the ductility and even more rounded stress-strain behaviour. These strength enhance-
ments, concerning all the stainless steel grades, occurs mainly in the corner region but can extend to
the faces of box sections as shown by Cruise and Gardner [32] (up to 4t of distance of the corner for
boxes, where t is the member thickness). In order to develop not too-conservative relations, these effects
deserve particular interest for the formulation of design guides. Furthermore, this phenomenon is much
more pronounced for stainless steel than carbon steel.

In 1990, Coetsee et al. [34] were the first to investigate the strength enhancements of cold-formed
stainless steel members. From this first work, many researchers interested in this field [32, 35, 36] and
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Figure 1.2: Duplex stainless steel application - Sölvesborg Bridge, Sölvesborg, 2012 - Ljusarkitektur
Architects.

provided equations to account this latter point based on experimental data. The work carried out by
Cruise and Gardner [32] enable for instance the prediction of the 0.2% proof test σ0.2 in both the corner
and faces members sections. However, only the prediction of the 0.2% proof test is possible and none of
the models are able to predict the full stress-strain behaviour as well as the ductility reduction. Recent
works [37, 38] are trying to fill this void with more efficient models accounting for all the different
effects of cold-forming, in order to improve the exactness of FE models (which require the full stress-
strain cold-formed region behaviour).

Residual stresses Cold-working induce residual stress patterns in the cold-formed cross-sections. They
can be categorised as (i) bending residual stresses, (ii) membrane residual stresses and (iii) layering resid-
ual stresses. The first one occurs as a result of plastic deformation during forming and the second are
induced during the seam-welding operation. Layering residual stresses are introduced during the coiling,
uncoiling and leveling of the material sheets. These residual stresses can cause premature yielding as-
sociated with loss of stiffness and a reduction in the load-carrying capacity. At first glance, they should
therefore be considered in the design of cold-formed members, but studies [39, 40, 41] have found that
the influence of residual stresses on the general design is generally small.

1.4 Cold-formed columns uses and characteristics

Stainless steel, due to its useful aforementioned properties, is drawing more and more attention for civil
engineering projects. It can be used for simple solutions as presented by Rossi [7], like cladding anchors,
glass facade spiders, tie rods, fasteners or even rebar in concrete structure but it can also extend it range of
application to more ambitious project such as power plant or arches in bridges (see Fig. 1.2), as exposed
by Baddoo [33]. Naturally, they are used in aggressive environments, for example near salt water or in
very heavily polluted areas.

Facing the difficulty to cover all the range of applications, this report focus only on cold-formed
members subjected to compression forces since they are one of the major components in a structural
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Figure 1.3: Comparison of stress-strain (σ− ε) relation for different stainless steel grades.

(a) Press braking. (b) Cold rolling.

Figure 1.4: Cold-forming processes.

design. Their high efficiency turn it into an ideal solution for wall studs for instance. Cold-formed
members can also be used as roof purlins, roof trusses or girders, but in those cases, bending forces are
applied and go over our scope of study. The common column sizes, available to ArcelorMittal and listed
in [28] are given hereinafter. Width-to-thickness ratio b/t from 1.5 to 600 are in this way theoretically
available for SHS for example.

(i) 6m standard length and 0.5 to 8mm thickness.

(ii) 6 to 219.1mm diameter for CHS.

(iii) 12 to 300mm sides for SHS.

(iv) From 20 × 10 to 300 × 100mm for RHS.

Finally, several existing shapes for cold-formed stainless steel columns, developed to cover its extent
range of applications, may be observed in Fig. 1.6.
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(a) Cold rolling. (b) Press braking.

Figure 1.5: Cold-forming of a box section.

Figure 1.6: Typical cold-formed stainless steel members shapes.

2 Norms design rules and methods

This section present the different existing design rules for stainless steel columns in compression. Please
note that a nomenclature is available at the end of this report.

2.1 Buckling

Columns, either carbon steel or stainless steel, are likely to buckle, due to their high slenderness. It
can be flexural, local, torsional, global, distortional or a combination of those different buckling mode
(see Fig. 1.7 for examples of typical members buckling). The local buckling (Fig. 1.7(a)) is for instance
characterized by short and repeated buckling waves of the compressive portions of the element. The
distortional buckling (Fig. 1.7(b)) occurs at an intermediate length of the buckling waves, resulting in the
distortion and the rotation of the compression flange-lip.

The compression resistance of the section is also to verify, but is pretty often not the limiting factor
in the designs. In order to account the buckling resistance, different methods have been proposed and
progressively included in the norms standards. The compression resistance of the section is also to verify,
but is pretty often not the limiting factor in the designs. In order to account the buckling resistance,
different methods have been proposed and progressively included in the norms standards.
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(a) Local. (b) Distortional. (c) Flexural-torsional. (d) Flexural.

Figure 1.7: Lipped-channel column buckling modes examples.

2.2 Historical background

Despite earliest structural applications of stainless steel in the 1920-30s, the first dedicated design stan-
dard, the Specification for the design of light gauge cold-formed stainless steel structural members,
was only published in 1968 by the American Iron and Steel Institute (AISI) [42], revised in 1974 [43].
However, the AISI standard has been challenged in North America by the American Society of Civil En-
gineers (ASCE) standard, first published in 1991 and revised in 2002 [2].This latter version superseded
the AISI standard in North America. As others existing standards available worldwide, it is based on
carbon steel design rules, modified to account for the different stress-strain behaviour of stainless steel
(see Fig. 3).

The development of a design standard for stainless steel structures in Europe started in 1989 under the
influence of the Steel Construction Institute (SCI) and a first version was published by Euro Inox in 1994
[44], revised in 2003 [45] and 2007 [46]. In 1996, on the basis of the guidance of the First Edition of the
Euro Inox, the European Committee for Standardization (CEN) issued the ’pre-standard’ Eurocode ENV
1993-1-4 Design of steel structures, Supplementary rules for stainless steels [47]. The current version of
the European design standard applied to stainless steel, EN 1993-1-4 [1], was published in 2006, part of
the Eurocode 3: Design of steel structures, and superseded the Euro Inox standard.

In the rest of the world, some countries decided to publish their own codes and some others to
merely follow the recommendations of the North American standards or the ones from the ASTM In-
ternational (previously the American Society for Testing and Materials, ASTM). Japan (1995), South
Africa (1997), Australian/New Zealand (2001) or China (2002), with respectively [48], [49], [50] and
[51] norm standards, are among the few countries which published their own codes. It can be noted that
the Australian/New Zealand code is largely based on the American ones, but can occasionally lead to
more reliable designs according to an experimental study carried out by Liu and Young [52].

Current desirable enhancements of the design rules are:

(i) To be as reliable and precise as possible. Indeed, various experimental studies [4, 52, 53, 54, 55, 56]
highlighted that norms standards are often too-conservative for the design of stainless steel cold-
formed columns.

(ii) To give more value to the cold-forming effect, also in case of fire.

(iii) To appropriately recognised the non-linear material property and the geometric imperfection.

(iv) To consider all the stainless steel grades.

(v) To account for more intricate section geometries, with stiffeners for example.
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With the aim of improving the designs standards, researchers have developed several different design
methods. The methods advised by the European and North-American standards for the design of cold-
formed stainless steel members in compression are presented hereinafter. Nevertheless, it is important to
recognize that none of these design methods are theoretically correct and only turn a complicated non-
linear problem into a simple working model for engineers, so each individual member does not have to
be tested.

2.3 European design rules

The design of cold-formed stainless steel members in compression in the European standard is based
on a section classification, for calculation of the compression and buckling resistances, itself using the
Effective Width Method (EWM). This method, along with the way the cross-section classification use it,
are here presented.

2.3.1 The Effective Width Method

The Effective Width Method has been developed to account the plate buckling effects in long slender
plate elements (L� b with length L and width b). It is a semi-empirical formulation attributed to von
Kármán et al. in 1932 [57] and subsequently modified by Winter in 1947 [58]. The main idea of the
method, as illustrated Fig. 1.8, is to account the strength reduction of local buckled elements by reducing
its width b to an effective width be f f . The effective width is then considered stressed with the yielding
stress fy and carrying the full compressive load whereas the non-effective portion is considered fully
unstressed, which simplify the actual non-linear stress distribution that develops due to local buckling.
The efficiency of the method lead it to be quickly adapted for steel columns, and thus to cold-formed
stainless steel columns. The compressive strength of intricate cross-sections such as the ones exposed
in Fig. 1.6 can be calculated by splitting it into single-plates taken as isolated elements. Each of the
element is submitted to the EWM and the summation of all portions result in an effective section area of
the member Ae f f � A.

Figure 1.8: Effective Width Method concept.

This model utilise the critical plate buckling stress σcrl , given by Eq. 1.1. It account for geometrical
and material non-linearity imperfections and for boundary conditions and loading cases by mean of the
plate buckling coefficient k, leading to more reliable calculations. Using Eq. 1.2, it is possible to calculate
the plate slenderness ratio λp and in this way, to know the effective width be f f with Eq. 1.3 or 1.4. These
equations are the one adopted for stainless steel in the EN 1993-1-4 [1] for constantly stressed elements,
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based on the equation proposed by Winter for carbon steel [58]. It should be noted that λp can also
be calculated with Eq. 1.5 using the maximum design compressive stress at serviceability limit state
σcom,Ed,ser instead of the yield stress fy, as specified by Annex E of EN 1993-1-5 [59].

σcrl = k
π2E

12(1−ν2)

( t
b

)2
(1.1)

λp =

√
fy

σcrl
(1.2)

For cold-formed internal elements:

be f f =


1 for λp ≤ 0.673(

0.772− 0.215
λp

)
b

λp
for λp > 0.673

(1.3)

For cold-formed outstand elements:

be f f =


1 for λp ≤ 0.748(

1− 0.231
λp

)
b

λp
for λp > 0.748

(1.4)

λp =

√
σcom,Ed,ser

σcrl
(1.5)

In the Eurocodes EN 1993-1-1 for normal steel [3] and EN 1993-1-4 for stainless steel [1], the EWM
is only applied to Class 4 cross-sections (see Section 2.3.2), through the calculation of an effective area
Ae f f with the reduction factor ρ as Ae f f = ρA. ρ is naturally calculated with the help of Eq. 1.3 or 1.4
and depend on geometric and material properties. Indications are given in section 5.2.3 of EN 1993-1-4
[1] for cold-formed stainless steel members. The ρ-λ curves of EN 1993-1-4 [1] are plotted Fig. 1.9 and
compared with provisions of ASCE standard [2] (see Section 2.4.1). A discontinuity can be noticed for
the Eurocode formulations, due to the adaptation of the formulas for stainless steel members.

Finally, the EWM is considered as one of the principal design method for columns and beams, in-
cluded in the majority of design standards, mainly due to its simplicity of application. However, as
denoted by Batista [60], the factor k of Eq. 1.1 is defined according to empirical studies, which result
in large statistical deviations when theoretical and experimental results are compared. The incorpora-
tion of distortional buckling can also be awkward and determine the effective width of sections with
intermediate-stiffeners added to the plates is cumbersome. The EWM is also often seen as a ’black
box-type’ model, so equations origins are not always obvious for users. As shown in the following, de-
spite improvements added to the method at each new codes version, new structural design methods are
developed and currently challenge the EWM.

2.3.2 The cross-section classification

The cross-section classification is a fundamental feature of modern carbon steel and stainless steel design
codes. It is based on the influence of local buckling on their capacities, considering that lower are less
prone to local buckling than highers one. The Eurocode EN 1993-1-1 [3] defined four classes for stainless
steels, in the same way as for carbon steel, explained hereinafter using Baddoo and Burgan explanations
[61]. The moment-rotation behaviour of each four classes defined in EN 1993-1-1 [3] may be observed
Fig. 1.10.
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Figure 1.9: Buckling curves comparison of EN 1993-1-4 [1] and ASCE standard [2].

Figure 1.10: Cross-section classification of EN 1993-1-1 [3].

(i) Class 1 plastic: cross-sections that can develop their plastic moment capacity with the rotation
capacity required for plastic analysis.

(ii) Class 2 compact: cross-sections that can develop their plastic moment capacity but with limited
rotation capacity

(iii) Class 3 semi-compact: cross-sections that can reach the yield moment but local buckling prevents
the development of the plastic moment capacity.

(iv) Class 4 slender: cross-sections in which local buckling is liable to prevent the development of the
yield moment.

In the Eurocode EN 1993-1-4 [1], the classification is made comparing the width-to-thickness ratios
(b/t) of the plate to a multiple of a factor ε (given in Eq. 1.6). The stress distribution along the section and
the edge support conditions (i.e., internal or outstand) are also considered. For stainless steel sections,
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the classification is given in Table 5.2 of EN 1993-1-4 [1]. The overall classification of intricate shapes,
such as the ones of Fig. 1.6, require first the classification of each individual plate and then the final
classification of the member is the one of the most slender constituent element. Hence, the beneficial
interactions between flange and web are neglected.

Slenderness limits (on ε) in EN 1993-1-4 [1] are derived from few experimental results at the cross-
section level. Based on more comprehensive experimental database, Gardner and Theofanous [62] shown
that the current classification limits are overly conservative and may be relaxed.

ε =

√
235
fy

E
210000

(1.6)

In EN 1993-1-4 [1], once the cross-section classification has been made, the design of compression
stainless steel members to buckling is very similar to these of carbon steel, using EN 1993-1-1 [3]. First,
a cross-section design has to be made to yielding, local buckling and distortional buckling. The idea is
to always satisfy Eq. 1.7, using Eq. 1.8 to calculate the design uniform compression strength Nc,Rd . It
can be noticed that the Effective Width Method is thus applied only to class 4 elements, subject to local
buckling.

NEd

Nc,Rd
≤ 1,0 (1.7)

Nc,Rd =


A fy
γM0

for classes 1,2 or 3
Ae f f fy

γM0
for class 4

(1.8)

However, the cross-section resistance is pretty often not the design factor and a member design is
necessary (except for members with a slenderness λ ≤ 0.2). The design to flexural, lateral-torsional,
torsional and flexural-torsional buckling is therefore undertake, with the idea here to respect Eq. 1.9,
using Eq. 1.10 to calculate the design buckling resistance of the compression member Nb,Rd , equals to
the lowest value for all types of buckling. Eq. 1.10 use again the EWM for the class 4 elements prone to
local buckling.

NEd

Nb,Rd
≤ 1,0 (1.9)

Nb,Rd =


χA fy
γM1

for classes 1,2 or 3
χAe f f fy

γM1
for class 4

(1.10)

Furthermore, the reduction factor χ need to be calculated according to Eq. 1.11 with special provision
of the EN 1993-1-4 for the calculation of λ and φ. Indeed, λ is calculated according to Eq. 1.12 (with
anew use of the EWM) and φ (Eq. 1.13) is a value depending on an imperfection factor α, a limiting
slenderness λ0 and the already known slenderness λ. For cold-formed stainless steel members, EN 1993-
1-4 [1] recommend the values α = 0,49 and λ0 = 0,40 for flexural buckling and α = 0,34 and λ0 = 0,20
for torsional and torsional-flexural buckling. Those values are the same as the one adopted in the Second
edition of the Euro Inox Design Manual [45] and account for the non-linear stress-strain curve of stainless
steel. The experimental studies used to set α and λ0 are referenced in the commentary of this manual
[63].
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χ =
1

φ+
[
φ2−λ

2
]0.5 ≤ 1 (1.11)

λ =


√

A fy
Ncr

for classes 1,2 or 3√
Ae f f fy

Ncr
for class 4

(1.12)

φ = 0,5(1+α(λ−λ0)+λ
2
) (1.13)

The design procedure is similar to all the buckling modes (with design of the nature of Eq. 1.9) and
the lowest value is considered as the critical buckling strength of the member. Thus, the buckling design
can be undertake for cold-formed stainless steel members, using the cross-section classification and the
EWM of the Eurocode.

2.4 North-American design rules

2.4.1 Flexural buckling design in compression

For the design of cold-formed stainless steel members in compression, the ASCE standard [2] does not
class the cross-section but require the use of the Effective Width Method to consider local buckling. A
different approach has the one of EN 1993-1-4 [1] is nevertheless used in the North-America specifi-
cation, leading to different values for the reduction factor ρ. Indeed, Fn, the least of the flexural and
torsional-flexural buckling stress, known with Eq. 1.14 or 1.15 respectively, is calculated first. Then, the
effective area Ae f f can be computed through Eq. 1.19 (which is the Winter equation for carbon steel,
unchanged for stainless steel). This is a very similar equation to Eq. 1.3 or 1.4, but here, Fn is required to
compute the slenderness λ in Eq. 1.18. Differences between the two standards are visible Fig. 1.9. Once
Fn and Ae f f are known, the design axial strength, φcPn can be calculated with Eq. 1.20.

For flexural buckling:

Fn =
π2Et

(KL/r)2 ≤ Fy (1.14)

For torsional-flexural buckling:

Fn =
1

2β

(
σex +σt −

√
(σex +σt)2−4βσexσt

)
(1.15)

Where:

σex =
π2E0

(KxLx/rx)2

(
Et

E0

)
(1.16)

σt =

(
1

Ar2
0

)(
G0J+

π2E0Cw

(KtLt)2

)(
Et

E0

)
(1.17)

λ =

√
Fn

Fcr
(1.18)
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be f f =

{
1 for λp ≤ 0.673(
1− 0.22

λ

) b
λ

for λp > 0.673
(1.19)

φc = 0.85

Pn = Ae f f Fn
(1.20)

In the previous equations, Et represent the tangent modulus in compression, accounting for the non-
linear stress-strain curve of stainless steel, given in Eq. 1.21.

Et =
E0Fy

Fy +0.002nE0(σ/Fy)n−1 (1.21)

A full and detailed example of application of ASCE provisions for stainless steel [2] has been pub-
lished by Lin et al. [64]. It can be noticed that iterations are necessary, as the calculation of Et require the
knowledge of the normal stress σ. Indeed, to calculate the buckling strength resistance, the applied stress
is not necessary known, so assumptions and comparisons with the calculated Fn value are needed. This
is why, although this method is operational, some other methods are currently developed and studied in
North-America. The promising Direct Strength Method, presented below, is one of them.

2.4.2 The Direct Strength Method

The Direct Strength Method (DSM) is an other design method, currently challenging the EWM because
of its simplicity and efficiency in the design of intricate cross-sections. Its origins, much more recent than
the EWM, come from the study of distortional buckling of industrial steel storage racks at the University
of Sidney [65, 66]. Then, the firsts formulas proposed at that time were progressively extended to local,
distortional, flexural and flexural-torsional buckling by Schafer and Peköz [67], leading it to become one
of the major design method for members in compression. Thus, it has been adopted for the design of
cold-formed steel members in the North-American Specification [68] and in the Australian/New Zealand
code [69]. However, the DSM has not currently been adopted for the design of stainless steel members,
even if Becque et al. proposed an accurate full set of equations in 2008 [70], subsequently modified
by Rossi and Rasmussen in 2013 [71] to offer more accurate results in the low slenderness range. The
DSM-equations for stainless steel should nonetheless be integrated in future code versions, which is the
reason why this method is mentioned here.

The fundamental idea behind the DSM lie in the capacity of software to predict the accurate elastic
buckling stress f0. This can be done with the finite strip method (FS) or the general beam theory method
(GBT), freely accessible with non-commercial computational programs, respectively CUFSM [72] and
GBTUL [73]. Then, the column strength is predicted from the calculation of a slenderness λ (yield stress
to elastic buckling stress ratio) in conjunction with a strength curve, the latter being specific to a type
of buckling mode and selected statistically from test data. For example, the DSM distortional buckling
formulas for stainless steel design published by Rossi and Rasmussen [71] are given in Eq. 1.22 to 1.26.

λd =

√
fy

fod
(1.22)

For austenitic stainless steel, with λd ≤ 0.533:
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Ncd =

[
(1−1.88λd)

(
σu

σ0.2
−1
)
+1
]

Ny (1.23)

For austenitic stainless steel, with λd > 0.533:

Ncd =

(
0.8
λ1.1

d
− 0.15

λ2.2
d

)
Ny (1.24)

For ferritic stainless steel, with λd ≤ 0.533:

Ncd =

[
(1−1.88λd)

(
σu

σ0.2
−1
)
+1
]

Ny (1.25)

For ferritic stainless steel, with λd > 0.533:

Ncd =

(
0.9
λ1.1

d
− 0.20

λ2.2
d

)
Ny (1.26)

The DSM establish a real improvement of the design, as it is a much more understandable process,
using less complex strength equations and leading to more reliable results compare to the EWM, ac-
cording to Schafer review [74]. Furthermore, it utilise the entire cross-section in the elastic buckling
determination, accounting for web-flange interactions of the members. However, the cross-sectional
shape is not included and in this way, the method is currently limited to ’pre-qualified sections, i.e. those
respecting specific geometric parameters. The shift in the effective cross-section is not included either
and a computational tool, for example those referred before ([72, 73]) is required, which could be some-
times penalizing. Those few drawbacks are the main reasons explaining why the DSM is not currently
adopted in the Eurocodes, even if the DSM goal is to become a comprehensive procedure replacing the
EWM.

3 Monte Carlo simulations

3.1 Monte Carlo method

The Monte Carlo method was invented by Stanislaw Ulam in the early days of electronic computing dur-
ing the late 1940s. The name Monte Carlo refers to the famous casino in Monaco. Indeed, the important
initial issue of the method was the generation of large series of random numbers. Interests in the method
led it to extend quickly to a wide variety of tasks in the 1980s such as statistic or computational biology
and now, Monte Carlo methods are used everywhere, from chemistry, economics and finance to physics
and engineering.

As nowadays, generating random numbers is not a problem, the method is mainly used to generate
sampling to study mathematical problems for which analytical solutions are unavailable. Monte Carlo
method is thus used to study properties of system that behave in a random fashion, with random gen-
erations of variables describing the behaviour of the system. Different statistical distributions, such as
normal or log-normal can be used in this process.

For this project Monte Carlo method will be used to generate ’random’ sets of inputs for the numerical
model, respecting measurements realised on stainless steel products. The inputs would next be used in
a numerical model in order to simulate uncertainties and evaluate the impact on the response of the
model.The data generation is detailed in Section 3.3 of Chapter 2.
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3.2 Parameters subjected to uncertainties

The chosen parameters subjected to uncertainties for this project are given in Table 1.1. It can be noted
that width b and depth h are considered with the same distribution, as this project focus on square hollow
section.

Category Parameters (unit)

Geometry

Width b and Depth h (mm)
Thickness t (mm)

Inner radius ri (mm)
Global imperfection factor e0
Local imperfection factor w0

Material

Modulus of elasticity in the flat part E f (N/mm2)
Yield stress in the flat part σ0.2, f (N/mm2)

Strain-hardening exponent in the flat part n f

Second strain-hardening exponent in the flat part n
′
0.2,1.0, f

Modulus of elasticity in the corner part Ec (N/mm2)
Yield stress in the corner part σ0.2,c (N/mm2)

Strain-hardening exponent in the corner part nc

Second strain-hardening exponent in the corner part n
′
0.2,1.0,c

Table 1.1: Input parameters for the numerical model subjected to tolerances.

3.2.1 Geometric parameters

The geometric parameters of a column cover the classic outward dimensions, all represented Fig. 1.11
(except from the length L), as well as the global and local imperfections. It has been decided that, even if
measurements have been done for the corner enhancement extend, this dimension would not be included
in the Monte Carlo process, as the distribution of enhancement varies along the width of the column.
Accurate proposed model would be used instead to include this parameter in the numerical model (see
Section 1.1 of Chapter 2). Likewise, the eccentricity of the applied load is not included in the Monte
Carlo process, as measurements of this value in laboratories and on construction sites are not available.

3.2.2 Material parameters

The key material parameters of this study are the modulus of elasticity E, the yield stress σ0.2 and the
two Ramberg-Osgood coefficient n and n

′
0.2,1.0, both in the flat and corner parts. All those parameters are

used in the adopted stress-strain model for the numerical simulations.
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Figure 1.11: Section labelling convention (from Theofanous and Gardner [4]).
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Chapter 2

Numerical modelling

This chapter is interested in the numerical work of this project. The first section presents the construction
of the numerical model in Abaqus face to one experimental test. Choice of geometric imperfection
factors and numerical parameters are discussed. The Python script used to submit almost one thousand
numerical model is described in the second section. This script is next validate to 67 experimental tests
available in literature. Finally, the generation of data, using Monte Carlo and statistical curve fitting
methods is detailed in the last section of this chapter.
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1 Numerical model

As the goal of this project is to run hundreds of numerical simulations, it is important to build a reliable
numerical model. This model needs to be validated against previously conducted experimental tests.
The tested column chosen for this step is the roll-formed duplex stainless steel (grade EN 1.4162) SHS
80 × 80 × 4 - 2000 (b×h× t−L) described by of Theofanous and Gardner [4]. Nominal dimensions,
measured dimensions and measured material properties are given in Table 2.1 to Table 2.3. In the first
place the nominal dimensions of the column were used to build the FE model.

bnom (mm) hnom (mm) tnom (mm) Lnom (mm)
80 80 4 2000

Table 2.1: Nominal dimensions.

bm (mm) hm (mm) tm (mm) Lm (mm) ri,m e0 w0

79.5 79.6 3.80 1999 3.40 0.41 -

Table 2.2: Measured dimensions.

E f (MPa) σ0.2, f (MPa) n f n
′
0.2,1.0, f σu, f (MPa) Ec (MPa) σ0.2,c (MPa) nc n

′
0.2,1.0,c

197200 657 4.7 2.6 773 210000 731 5.6 3.7

Table 2.3: Measured material properties.

As done in the test, the aim of the numerical simulation is to model a full non-linear buckling analysis.
Basic modelling assumptions recommended by Gardner and Nethercot [39] and Ashraf et al. [5] were
used to build the most accurate numerical model possible. Thus, the simulation is divided into two times,
(i) elastic analysis firstly and (ii) a plastic analysis, which is necessary for the inclusion of geometric
imperfections (see Section 1.3). The general purpose Finite Element software package Abaqus [6] is
used in this project.

1.1 Material modelling

1.1.1 Theoretical material model

As previously mentioned, many models have been proposed in order to model the non-linear behaviour
of stainless steel [22, 23], and this field of research is still active [24, 25]. The chosen material model
is based on the one proposed by Gardner and Ashraf [23], given in Eq. 2.1. The only difference is that
the equation is changed to pure elastic behaviour for σ ≤ σ0.2/5, as it is a requirement of Abaqus to
have at least one point of pure elastic behaviour before the plastic one. The choice of σ0.2/5 as an upper
limit for the pure elastic part is a personal choice but corresponds to the fact that the first and second
sub-equations of Eq. 2.1 lead to really close values for this range of stress.

Applying this model to a large set of data is convenient as the full stress-strain behaviour of a column
can be determined from only two common parameters, σ0.2 and E0. Indeed, Eq. 2.2, 2.3 and 2.4 enables
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the calculation of E0.2, εt0.2 and εt1.0 respectively and specific values have been proposed for the strain-
hardening exponents n and n

′
0.2,1.0 by Afshan et al. [75] and for the σ1.0/σ0.2 ratio by Ashraf [76].

ε =



σ

E0
for σ≤ σ0.2/5

σ

E0
+0.002

(
σ

σ0.2

)n
for σ0.2/5 < σ≤ σ0.2

σ−σ0.2
E0.2

+
(

εt1.0− εt0.2− σ1.0−σ0.2
E0.2

)(
σ−σ0.2

σ1.0−σ0.2

)n
′
0.2,1.0

+ εt0.2 for σ > σ0.2

(2.1)

E0.2 =
σ0.2E0

σ0.2 +0.002nE0
(2.2)

εt0.2 = 0.002+
σ0.2

E
(2.3)

εt1.0 = 0.01+
σ0.2

E
(2.4)

1.1.2 Corner strength enhancement

As explained in Chapter 1, the cold-forming process induces strength enhancement in the corner region
and therefore the corner stress-strain behaviour of the column differs from the flat part behaviour. Thus,
key corner material parameters Ec and σ0.2,c need to be measured in the corner of the column before
using them in Eq. 2.1. If proper measurements have not been conducted in the corner of the column, it is
possible, as proposed by Ashraf [76], to use the same values as the one measured in the flat parts, except
for σ0.2,c where Eq. 2.5, proposed by Cruise and Gardner [32], can be used. Nevertheless, this equation
supposes that the ultimate stress of the flat material σu, f has been measured, which is not always the case.

σ0.2,c = 0.83σu, f (2.5)

Once corner material parameters have been fixed, the corner enhancements are extended up to t for
press-braked sections and 2t for roll-formed sections, as recommended by Ashraf et al. [5] and illustrated
in Fig. 2.1. This reflects previously observed cold-forming mechanical property enhancements outside
of the corner and this enables better numerical results to be achieved.

1.1.3 Abaqus material model

Using Eq. 2.1 for both flat and corner parts, the full stress-strain curve of the column was generated.
Stress values were fixed from 0 up to 1200 MPa, with a fixed increment equal to 5 MPa, which means
that the created curve is an approximation of the real curve made up of small segments. It should be
noted that less points could have been entered.

Next, the point coordinates need to be entered as true stress σtrue and log plastic strain ε
pl
ln in Abaqus.

Thus, Eq. 2.6 and 2.7 have been used before entering the points in the software.

σtrue = σnom(1+ εnom) (2.6)
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(a) Corner region plus t. (b) Corner region plus 2t.

Figure 2.1: Different corner enhancement extent (from Ashraf et al. [5]).

ε
pl
ln = ln(1+ εnom)−

σtrue

E
(2.7)

1.1.4 Residual stresses

As mentioned in Section 1.3 of Chapter 1, the cold-forming of the sections induces residual stresses,
namely (i) bending residual stresses, (ii) membrane residual stresses and (iii) layering residual stresses.
For numerical simulations, studies of Cruise and Gardner [77], Jandera and Machacek [78] and Key and
Hancock [41] have come to the same conclusions, namely:

(i) Bending residual stresses do not have to be explicitly introduced in a numerical model as they are
inherently present in the measured material properties.

(ii) Membrane residual stresses are relatively insignificant in stainless steel hollow sections and do not
have to be modelled.

(iii) Layering residual stresses have very small influence on the ultimate load and do not have to be
modelled as well.

Consequently, residual stresses were not introduced in the numerical model but their influence on the
stress-strain behaviour was present through the measured material values.

1.2 Boundary conditions and applied load

Usually, only one rotational degree of freedom is enabled at each end of the experimentally tested
columns (using knife edges), as well as the vertical translation on top of it. As in Abaqus it is sim-
ple to apply any boundary conditions, both ends were pin ended in order to not favour any buckling
direction. The vertical translation of the top end of the column is obviously still enabled.

It has been decided to use a displacement controlled analysis which is more adapted for a non-linear
buckling analysis. Thus, a displacement, incremented at each step of the analysis, is applied to a reference
point located at the centre of the top of the column. This reference point is tied to the top edge to ensure
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(i) an equal distribution of the displacement (and therefore the load) in the column and (ii) that the top
end moves as a plan. To ensure the same motion of each point of the top end, these points were tied
together. The tied condition was also applied at the bottom of the column.

1.3 Geometric imperfections

The incorporation of geometric imperfections is realised in two steps. An elastic buckling analysis is
carried out first, in order to then use the elastic buckling shapes as initial geometric imperfections in the
non-linear analysis. Thus, the first elastic global buckling shape multiplied by the global imperfection
factor e0 is used to simulate the global imperfection and in the same way, the first elastic local buckling
shape times the local imperfection factor w0 is used to simulate the local imperfection. In Abaqus, this
is done using the keyword *IMPERFECTION.

In order to obtain accurate results from the numerical model, values employed for the global im-
perfection factor e0 and the local imperfection factor w0 in the latter are the ones measured during
experiments. In the case of a lack of data, recommendations of Ashraf et al. [5] and of Gardner and
Nethercot [39] can be used instead. Values of L/1500 can therefore be used for the global imperfection
factor e0 and Eq. 2.8 is used to compute the local imperfection factor w0. These values have been shown
to provide the best agreement between experimental and numerical results. However, using these values
corresponds to the use of ’averages’, which is not desirable keeping in mind the goal of this project. This
is why it has been preferred to use measured data when they are available.

w0 = 0.023
(

σ0.2

σcr

)
t (2.8)

1.4 Numerical parameters

Element type Owing to the thin-walled nature of tubular sections, shell elements were employed to
discretise the model. As already used in previous studies, the four-noded doubly curved shell element
with reduced integration S4R [6] were utilised in this study.

Mesh size A uniform mesh size equal to the thickness t was used in the model. As the mesh size has
an important impact on the results, a convergence study has been conducted to validate this choice. It has
been decided to test six different mesh sizes. The mesh size in the flat part M f was ranging from 2 (t/2)
to 32mm (8× t) and the mesh size in the corner Mc was equal to 2 or 4mm (bigger size elements in the
corner would lead to use of rectangular elements instead of square ones, as the corners are quite small.

The mesh inputs of this study are given in Table 2.4 and the corresponding results are given in Ta-
ble 2.5 and plotted in Fig. A.1. The numerical elastic buckling load Fu,el,FE was compared to the Euler
elastic buckling load Fu,el equals to 545.7 kN for the SHS 80 × 80 × 4 - 2000 studied experimentally by
Theofanous and Gardner [4]. Simulation times (elastic and plastic simulations), Fu,FE /Fu,Test ratio and
∆u,FE /∆u,Test ratio are also given.

According to Table 2.5 and Fig. A.1, the best Fu,FE /Fu,Test ratio is obtained for the 1st model. Fur-
thermore, this is also the model presenting the best ∆u,FE /∆u,Test ratio, as well as a ratio Fu,el,FE /Fu,el very
close to one. The simulation time associated to this model is quite high but is not penalising in relation
to the quality of the obtained results. Thus, the 1st model is considered as the most accurate one and a
mesh size equals to the thickness t of the model is kept.
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Model
Mesh

N M f (mm) Mc (mm)
1st 38000 4 4
2nd 148000 2 2
3rd 80000 4 2
4th 22000 8 4
5th 14000 16 4
6th 12000 32 4

Table 2.4: Convergence study models.

Model Time (s) Fu,el,FE /Fu,el Fu,FE /Fu,Test ∆u,FE /∆u,Test

1st 1919 1.017 1.056 0.757
2nd 10966 1.020 1.133 0.602
3rd 5249 1.020 1.133 0.602
4th 1254 1.016 1.129 0.603
5th 729 1.008 1.176 0.279
6th 623 1.000 1.117 0.695

Table 2.5: Convergence study results.

1.5 Validation of the model

Using the measured dimensions (Table 2.2) instead of the nominal dimensions (Table 2.1), the final
numerical results obtained for the SHS 80 × 80 × 4 - 2000 tested experimentally by Theofanous and
Gardner [4] are given in Table 2.6. Applied to that specific column, Fu,el,FE /Fu,el = 0.94, being -5.5%
of relative error to the theoretical elastic buckling load and Fu,FE /Fu,Test = 1.06, being 5.64% of relative
error to the experimental buckling load. As the errors for this particular column are low, the numerical
model built previously has been judged satisfactory to serve as a basis in the next step of this project,
namely the application of the the Monte Carlo method.

Time (s) Fu,el,FE /Fu,el Fu,FE /Fu,Test ∆u,FE /∆u,Test

1807 0.94 1.06 0.67

Table 2.6: Final model construction results.

2 Python scripting

2.1 Python script

As the goal of this project is to run hundreds of numerical models, it is convenient to use a script to
run them all in one loop instead of modifying manually each model. For that purpose, a script has been
written in Python [79]. Python is a powerful object-oriented programming language easily usable jointly
with Abaqus, as in the background, Abaqus is scripted in Python. An overview of the loop that the
Python script realises is displayed Fig. 2.2. The Python script goal is mainly to automate the steps that
have been realised manually in the construction of the numerical model developed in section 1. It enable

Improvement of existing design rules for cold-formed stainless steel hollow sections under compression forces
using numerical modelling and Monte Carlo simulations



Python scripting 29

the user to easily submit and post-analyse jobs without any efforts. Details of the code steps are given in
the sections hereinafter.

Monte Carlo analysis

Input

dimensions.txt

Read

Abaqus elastic input

file

Job-Elastic.inp

Create

Abaqus elastic output

data file

Job-Elastic-Output.dat

Read

Result

Results.txt

Append

Abaqus plastic input

file

Job-Plastic.inp

Create

Abaqus plastic output

data file

Job-Plastic-Output.dat

Read

Iceberg HPC

Run Abaqus

Iceberg HPC

Run Abaqus

Figure 2.2: Overview of the Python script loop.

2.1.1 Dimensions reading

Before submitting a column or several columns, the script stores all the geometrical and material values
associated to each column in one list and one dictionary: all columns names and all columns dictionary
respectively. The list all columns names obviously contain all the names of the column and the dictio-
nary all columns dictionary contains the list with all the important parameters associated to a column as
a value, associated with a key having the name of the column. For instance, column name and column
parameters can be called in Python shell with:

>>> all_columns_names[0]
’theofanous2009_a_0’
>>> all_columns_dictionary[all_columns_names[0]]
[’79.50000’, ’79.60000’, ’3.80000’, ’1999.00000’, ’3.40000’,
’1.33267’, ’0.12037’, ’197200.00000’, ’657.00000’, ’755.55000’,
’4.70000’, ’2.60000’, ’51603.70896’, ’0.00533’, ’0.01333’,

’210000.00000’, ’731.00000’, ’840.65000’, ’5.60000’, ’3.70000’,
’49792.40999’, ’0.00548’, ’0.01348’, ’0.30000’]

>>>

When the code is started, the first initial step is therefore the reading of the file dimensions.txt,
generated from an Excel sheet containing all the important data, obviously written in a specific order.
The name of the column is written first, then the geometrical parameters, the material properties in the
flat part next, the material properties in the corner part next and finally the Poisson’s ratio.

The name of the column are chosen to be quickly understandable: the first author of the experimental
paper is written, with the year of paper publication next and a column index for that author at the end. The
additional 0 means that it corresponds to the original column, as close from the one tested as possible.
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For instance, the SHS 80 × 80 × 4 - 2000 tested by Theofanous and Gardner [4] and mentioned in
section 1 is given the name theofanous2009 a 0.

2.1.2 Elastic analysis

After reading the column parameters, the Python script inject them into a ’virgin’ elastic Python file. It
means that the corresponding inputs (geometrical and material properties) are written at the correct place
into a Python file which is next used to generate the Abaqus input file. That ’virgin’ elastic Python file is
written using a function of the main Python script. All the parameters (geometrical and material) of any
column can be injected in that function, which generate a Python file which can afterwards generate an
Abaqus input file.

That ’virgin’ elastic Python file has been included in the main Python script in analysing the abaqus.rpy
generated automatically by Abaqus when the user builds a model. It is a very specific file which is only
valid for the particular topic of this project, the non-linear analysis of cold-rolled stainless steel square
hollow section. Press-braked sections are indeed very seldom for SHS stainless steel and thus, the corner
enhancement is always fixed to 2t (see Fig. 2.1(b)). Otherwise, the ’virgin’ elastic Python file respects
all the modelling assumptions described in section 1. The generated elastic Python file is understandably
named, such as theofanous2009 a 0 elastic.py.

The elastic Python file is then send to Iceberg (the HPC of the University of Sheffield) in a folder
named as the column name and executing a remote command on the server through the main Python
script, an Abaqus input file Job-Elastic.inp is generated on the server. Executing a new remote com-
mand, the Python main script submit the Job-Elastic.inp to the Iceberg Abaqus calculator. The elastic
submission is usually quite fast and the main Python script waits for 5 minutes in order to make sure
that the submission is over. When the submission is completed, a series of Job-Elastic-Output files is
created. The most important one at this step is the file Job-Elastic-Output.dat, containing the buckling
values associated with each buckling mode.

2.1.3 Plastic analysis

First local buckling mode detection Once the elastic analysis is completed, it is time to start the
plastic one. However, results from the elastic analysis are required in order to include the geometric
imperfections (see Section 1.3 of current chapter). In this way, it is necessary to detect the first local
buckling mode of the column.

In order to do this, the main Python script downloads the file Job-Elastic-Output.dat from the
server. As the length of the file may vary from one analysis to another, it has been decided to browse
the file backwards, as the end of the file is always the same. An example of Job-Elastic-Output.dat
file end is written hereinafter. Browsing the buckle table frontward, the idea was to use the symmetric
properties of the column, so that any global buckling mode would repeat once (on both X and Y axes)
and so the mode associated with the first unique value to be meet correspond to the first local buckling
mode. Browsing the file backward uses the same idea, and when two equal values are encountered, the
function returns the first local buckling mode as the one located two positions before.

However, is has been noted that as the columns are finally non-symmetric, the first local buckling
mode is not correctly detected, as no buckling loads does repeat, although very close . By chance, the
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code returns (in a way due to an error) that the first local buckling mode is the number 3, which is true
in a majority of the buckling analysis. Indeed, the first and second modes always correspond to the first
order global buckling along the X and Y axes and so the third mode is the first local one, as quite often,
the second order global buckling does not develop in the column.

MODE NO EIGENVALUE

1 2.48844E+05
2 2.49805E+05
3 5.55599E+05
4 5.55692E+05
5 5.59998E+05
6 5.60297E+05
7 5.67527E+05

THE ANALYSIS HAS BEEN COMPLETED

ANALYSIS COMPLETE
WITH 565 WARNING MESSAGES ON THE DAT FILE
AND 1 WARNING MESSAGES ON THE MSG FILE

JOB TIME SUMMARY
USER TIME (SEC) = 59.860
SYSTEM TIME (SEC) = 2.1700
TOTAL CPU TIME (SEC) = 62.030
WALLCLOCK TIME (SEC) = 64

Plastic stress-strain points generation As the model runs a non-linear buckling analysis, plastic
stress-strain curves need to be entered in Abaqus. The stress-strain points for both flat and corner parts
are therefore generated from the main Python script using two functions, create plastic points flat and
create plastic points corner respectively. Using stress points ranging from 0 up to 1200 MPa with an
increment of 5 MPa, the corresponding strain points are created using Eq. 2.1 (in respect of flat or corner
parameters). Then, they are converted for Abaqus with Eq. 2.6 and Eq. 2.7. All negative strain points are
then removed, corresponding points of the stress list are also removed and the first strain point is fixed
to zero. Finally, the stress-strain curve is written on a string, in a format of a tabular (one line for each
point).

Plastic analysis When the first local buckling mode has been detected and the plastic points created,
the main Python script is ready to create, in the same fashion as the previously conducted elastic analy-
sis, a plastic Python file from a ’virgin’ plastic python file. That file is remarkably similar to the ’virgin’
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elastic Python file used formerly, with just a few nuances. For instance this time, the analysis is changed
from an elastic buckling one to a non-linear plastic one, the plastic parameters are added along with the
elastic ones and it is asked to use the buckling shapes of the elastic analysis as initial imperfections.
However, the idea is the same, and hence, the main script generate a plastic python file, such as theo-
fanous2009 a 0 plastic.py.

That file is sent to the server and this time, executing a remote command on the server, an Abaqus
input file Job-Plastic.inp is generated. This file is then submitted to the Iceberg Abaqus calculator
and after 30 minutes of waiting time, the plastic submission is supposed to be completed. A series of
Job-Plastic-Output files is created.

2.1.4 Results reading and saving

The outputs in which this study is interested are mainly the numerical elastic buckling load Fu,el,FE and
the numerical buckling load Fu,FE . It can also be interesting to request the numerical end-shortening at
buckling load δu,FE as well as the numerical buckling displacement at mid-length ∆u,FE . These values
are probably written down somewhere in the Job-Plastic-Output.dat file but it has been judged simpler
to request them using an external and new python file.

Node detection To obtain the displacement at mid-length of the column, is it necessary to know the
closest node number on the face of interest. As from the code point of view, no visual analysis is pos-
sible, it is also important to know which face had buckled. Indeed, the column can buckle around the
Y-axis and that has been named a X node number as the displacement of the column occurs along the
X-axis, as represented in Fig. 2.3(a). Or, on the contrary, the column buckle around the X-axis, resulting
in a displacement along the Y-axis as visible in Fig. 2.3(b), named therefore a Y node number . In the
case of a buckling occurring in the two directions, the code will only return the displacement of the point
located in the middle of the most buckled face. The final numerical buckling displacement at mid-length
∆u,FE is judged to be the maximum of the X and Y axis displacement.

U, Magnitude

+0.000e+00
+1.151e+01
+2.302e+01
+3.452e+01
+4.603e+01
+5.754e+01
+6.905e+01
+8.056e+01
+9.207e+01
+1.036e+02
+1.151e+02
+1.266e+02
+1.381e+02

Step: Step−Riks
Increment     30: Arc Length =    14.83
Primary Var: U, Magnitude
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: Job−Plastic−Output.odb    Abaqus/Standard 6.11−3    Wed Jul 29 13:08:00 BST 2015

(a) X-axis displacement.

U, Magnitude

+0.000e+00
+1.637e+01
+3.275e+01
+4.912e+01
+6.549e+01
+8.187e+01
+9.824e+01
+1.146e+02
+1.310e+02
+1.474e+02
+1.637e+02
+1.801e+02
+1.965e+02

Step: Step−Riks
Increment     30: Arc Length =    15.66
Primary Var: U, Magnitude
Deformed Var: U   Deformation Scale Factor: +1.000e+00

ODB: Job−Plastic−Output.odb    Abaqus/Standard 6.11−3    Thu Jul 23 19:45:36 BST 2015

(b) Y-axis displacement.

Figure 2.3: X and Y axes buckling directions.

Using two functions, two Python scripts, executable by Abaqus on the server, are generated locally.
The function asks Abaqus to use one of its inherent module called ’findNearestNode’. Using the mid-
length real point coordinates of the column, Abaqus returns the nearest node number. So theses scripts
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are again sent to Abaqus, submitted from the main Python script and the values obtained from these two
runs are stored with the names node number X and node number Y.

Results extraction Finally, knowing the node number the closest of each center faces, a last Python
file named for instance theofanous2009 a 0 extract.py is generated. This last Python file request that
the buckling value, the end-shortening and the displacements at mid-length of each face are written down
in different rpt files named for instance LD theofanous2009 a 0.rpt, LLD X theofanous2009 a 0.rpt
and LLD Y theofanous2009 a 0.rpt respectively. These .rpt files contain the evolution of each of the
outputs in the course of the plastic simulation steps. Graphs representing respectively the end-shortening,
the displacement at mid-length of the ’X-face’ and the displacement at mid-length of the ’Y-face’ each
time versus the load are also generated and saved as .png files.

The whole of the folder containing all the files used and generated during the full submission of the
column is ultimately retrieved on the computer and with a final function, the main Python script browse
the .rpt files quoted hereinbefore and find the final outputs. There are written down in the following order
in the Results.txt file:

(i) Name of the column.

(ii) Numerical elastic buckling load Fu,el,FE in kN.

(iii) Numerical buckling load Fu,FE in kN.

(iv) Numerical end-shortening at buckling load δu,FE in mm.

(v) Numerical buckling displacement at mid-length along the X-axis ∆u,X ,FE .

(vi) Numerical buckling displacement at mid-length along the Y-axis ∆u,Y,FE .

2.1.5 Submission threads

As the full submission of a column takes on average around 70 minutes, it has been decided to submit
several column in the same time using threads in Python. It has been decided to limit the maximum
number of simultaneous submission to 10 to counterbalance the interpenetration problems that can occur
with several submission at a time. In the Python main script, a loop was implemented to submit 10 new
files each 4000 seconds (approximately the average time used by one simulation). A top loop enable to
submit as many files as desired, respecting the 10 maximum submission at a time with the 4000 seconds
waiting time.

2.2 Script validation

2.2.1 Experimental results data collection

In order to validate the Python script and the numerical model built, the script was firstly used to simulate
a total of 67 previously conducted flexural buckling tests. A summary of the origin of the collected data
is given in Table 2.7. For each test, using the measured geometrical and material properties, the elastic
buckling load Fu,el was computed, and the experimental buckling load Fu,Test was collected. Although
rarely available, the displacement at mid-length of the column at the buckling load was also collected.
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Reference Number of tests Material grade
Theofanous and Gardner [4] 6 EN 1.4162 (Duplex)

Afshan and Gardner [54] 7 EN 1.4003 and EN 1.4309 (Ferritic)
Huang and Young [55] 8 EN 1.4162 (Duplex)

Liu and Young [52] 8 EN 1.4301 (Austenitic)
Rasmussen and Hancock [80] 3 EN 1.4307 (Austenitic)

Gardner and Nethercot [81, 82] 8 EN 1.4301 (Austenitic)
Young and Lui [83] 10 EN 1.4162 (Duplex)1

Gardner et al. [84] 6 EN 1.4318 (Austenitic)
Ala-Outinen and Oksanen [85] 2 EN 1.4301 (Austenitic)

Talja and Salmi [86] 3 EN 1.4301 (Austenitic)
Talja [87] 6 EN 1.4318 (Austenitic)

1 Supposed grade as only the nuance is specified.

Table 2.7: Summary of available flexural buckling tests conducted on roll-formed stainless steel square
hollow sections.

2.2.2 Comparison with experimental results

Once the data collection has been done, the Python script was used to submit all these 67 different
columns. Table 2.8 presents the obtained result ratios. The ultimate load is generally well-predicted,
with an average equals to 0.98 and a small coefficient of variation (COV) of 0.12, which indicates that
the results are not too spread around the average. The elastic buckling load is however less well pre-
dicted, with an average of 0.84 with a COV equals to 0.24. Thus, the elastic buckling load is quite
often underestimated and even sometimes far from the computed Euler buckling load (see sub-model
young2006 f 0 tested by Young and Lui [83] for instance). Furthermore, the COV is too important and
indicate that the model is not clearly reliable in this prediction. Finally, compared to the small amounts
of available data, the displacement at mid-length of the columns is badly predicted. Indeed, even if the
ratio average is equal to 1.01, the corresponding COV of 1.04 is far too large and so the ratio can not be
deemed correct. It should be noted that the simulations gardner2006 e 0 and talja2002 e 0 have failed,
despite several attempts to run it.

In view of the results, the Python script has been judged accurate in the prediction of the ultimate
buckling load, average for the computation of the elastic buckling load and not relevant in the estimation
of the displacement at mid-length. The inaccuracy in the prediction of the displacement at mid-length
can nevertheless be explained by the idea that it is hard to detect the buckling moment. Indeed, idealised
buckling would suppose that the column is progressively loaded with no displacement at mid-length, and
suddenly, it buckles, with the corresponding displacement. However, both in experimental and numerical
tests, the displacement is progressive and after the peak load (ultimate buckling load), the displacement
continue to increase. As the load is applied through steps, it is quite hard to obtain a correct value for
this displacement at mid-length.
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Reference Name in Python script Name in paper Fu,el,FE /Fu,el Fu,FE /Fu,Test ∆u,FE /∆u,Test

Theofanous and Gardner [4]

theofanous2009 a 0 80 × 80 × 4 2000 0.94 1.06 0.67
theofanous2009 b 0 80 × 80 × 4-1200 0.93 0.88 1.45
theofanous2009 c 0 60 × 60 × 3-2000 0.94 1.02 1.04
theofanous2009 d 0 60 × 60 × 3-1600 0.94 1.02 0.72
theofanous2009 e 0 60 × 60 × 3-1200 0.94 1.02 0.72
theofanous2009 f 0 60 × 60 × 3-800 0.92 1.02 0.73

Afshan and Gardner [54]

afshan2013 a 0 SHS 80 × 80 × 3-1577 0.94 0.99 0.98
afshan2013 b 0 SHS 80 × 80 × 3-2077 0.94 0.77 4.38
afshan2013 c 0 SHS 80 × 80 × 3-2577 0.95 1.11 0.60
afshan2013 d 0 SHS 60 × 60 × 3-1177 0.93 1.06 0.43
afshan2013 e 0 SHS 60 × 60 × 3-1577 0.93 1.11 0.38
afshan2013 f 0 SHS 60 × 60 × 3-2077 0.94 1.17 0.45
afshan2013 g 0 SHS 60 × 60 × 3-2577 0.94 1.20 0.65

Huang and Young [55]

huang2013 a 0 C2L550 0.36 0.96 -1

huang2013 b 0 C2L900 0.86 1.09 -1

huang2013 c 0 C2L1200 0.96 1.01 -1

huang2013 d 0 C2L1550 0.97 1.04 -1

huang2013 e 0 C3L550 0.92 0.93 -1

huang2013 f 0 C3L900 0.95 0.84 -1

huang2013 g 0 C3L1200 0.95 1.07 -1

huang2013 h 0 C3L1550 0.96 1.05 -1

Liu and Young [52]

liu2003 a 0 S1L1200 0.13 0.73 -1

liu2003 b 0 S1L2000 0.38 0.73 -1

liu2003 c 0 S1L2800 0.72 0.81 -1

liu2003 d 0 S1L3600 0.96 0.94 -1

liu2003 e 0 S2L1200 0.85 0.93 -1

liu2003 f 0 S2L2000 0.90 0.98 -1

liu2003 g 0 S2L2800 0.91 0.97 -1

liu2003 h 0 S2L3600 0.91 1.11 -1

Rasmussen and Hancock [80]
rasmussen1993 a 0 S1L1000C 0.95 0.82 -1

rasmussen1993 b 0 S1L2000C 0.96 1.05 -1
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Table 2.8 – Continued from previous page
Reference Name in Python script Name in paper Fu,el,FE /Fu,el Fu,FE /Fu,Test ∆u,FE /∆u,Test

rasmussen1993 c 0 S1L3000C 0.97 1.30 -1

Gardner and Nethercot [81, 82]

gardner2004 a 0 SHS 80 × 80 × 4-LC-1.9 m 0.95 1.07 -1

gardner2004 b 0 SHS 80 × 80 × 4-LC-2 m 0.93 0.88 -1

gardner2004 c 0 SHS 100 × 100 × 2-LC-2 m 0.35 0.96 -1

gardner2004 d 0 SHS 100 × 100 × 3-LC-2 m 0.82 0.85 -1

gardner2004 e 0 SHS 100 × 100 × 4-LC-2 m 0.94 0.96 -1

gardner2004 f 0 SHS 100 × 100 × 6-LC-2 m 0.92 0.84 -1

gardner2004 g 0 SHS 100 × 100 × 8-LC-2 m 0.89 0.83 -1

gardner2004 h 0 SHS 150 × 150 × 4-LC-2 m 0.28 0.82 -1

Young and Lui [83]

young2006 a 0 SHS1L1000 0.90 1.02 -1

young2006 b 0 SHS1L1500 0.92 1.10 -1

young2006 c 0 SHS1L2000 0.93 1.01 -1

young2006 d 0 SHS1L2500 0.93 1.08 -1

young2006 e 0 SHS1L3000 0.93 1.09 -1

young2006 f 0 SHS2L1000 0.23 0.82 -1

young2006 g 0 SHS2L1500 0.51 0.89 -1

young2006 h 0 SHS2L2000 0.90 1.10 -1

young2006 i 0 SHS2L2500 0.95 1.06 -1

young2006 j 0 SHS2L3000 0.96 1.11 -1

Gardner et al. [84]

gardner2006 a 0 80 × 80 × 3 – C850 (1.15m) 0.81 1.03 -1

gardner2006 b 0 80 × 80 × 3 – C850 (1.85m) 0.94 0.93 -1

gardner2006 c 0 80 × 80 × 3 – C850 (2.85m) 0.94 1.02 -1

gardner2006 d 0 100 × 100 × 3 – C850 (1.45m) 0.50 0.86 -1

gardner2006 e 0 100 × 100 × 3 – C850 (2.25m) –2 -2 -1

gardner2006 f 0 100 × 100 × 3 – C850 (3.55m) 0.96 0.97 -1

Ala-Outinen and Oksanen [85]
ala outinen1997 a 0 N1 0.85 0.97 -1

ala outinen1997 b 0 N2 0.85 0.97 -1

Talja and Salmi [86]
talja1995 a 0 RHS-1a - CC-2 0.90 0.90 -1

talja1995 b 0 RHS-1a - CC-3 0.91 0.89 -1

talja1995 c 0 RHS-1a - CC-4 0.91 0.97 -1

Continued on next page

Im
provem

entofexisting
design

rules
for

cold-form
ed

stainless
steelhollow

sections
under

com
pression

forces
using

num
ericalm

odelling
and

M
onte

C
arlo

sim
ulations



Python
scripting

37

Table 2.8 – Continued from previous page
Reference Name in Python script Name in paper Fu,el,FE /Fu,el Fu,FE /Fu,Test ∆u,FE /∆u,Test

Talja [87]

talja2002 a 0 R1C2B1 0.51 0.86 -1

talja2002 b 0 R1C2B2 0.95 0.89 -1

talja2002 c 0 R1C2B3 0.95 0.95 -1

talja2002 d 0 R4C2B1 0.82 1.06 -1

talja2002 e 0 R4C2B2 -2 -2 -1

talja2002 f 0 R4C2B3 0.96 1.02 -1

Mean 0.84 0.98 1.01
COV 0.24 0.12 1.04
1 Not measured during the real experiments.
2 Error in the numerical model.

Table 2.8: Comparison of Python script and experimental results.
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3 Monte Carlo data generation

3.1 Data collection

In order to generate the Monte Carlo input points used afterwards into the Python script, this project is
interested in the statistical distribution of the different inputs used in the script. To evaluate the statisti-
cal distribution of these parameters, a data collection was first necessary. The maximum data found in
literature concerning stainless steel square hollow sections, regardless of the experimental test applied
(buckling, bending, stub column etc.) were therefore collected. References of the accumulated data are
given in Table 2.9. The number of measures for the geometrical parameters, deemed to be not dependent
to the stainless steel grade are given in Table 2.10. The height h of the column is not indicated as the
statistical distribution used for this parameter will be the same as for the width b.

The material properties were collected only from tensile and compressive coupon tests and not from
stub column tests, which average the values for flat and corner parts. To have enough data for the
material properties from experimental measurements, the used grades in the Monte Carlo process are the
following:

(i) EN 1.4301, EN 1.4318, EN 1.4307 and EN 1.4571 for the austenitic nuance.

(ii) EN 1.4003 and EN 1.4509 for the ferritic nuance.

(iii) EN 1.4162 for the duplex nuance.

In regard of this choice, the actual number of existing measures for each material parameters are
given in Table 2.11.
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Reference
Number of measures

Material grade
Geometric Material

Theofanous and Gardner [4] 12 3 EN 1.4162
Afshan and Gardner [54] 15 8 EN 1.4003 and EN 1.4309
Huang and Young [55] 12 2 EN 1.4162

Liu and Young [52] 12 2 EN 1.4301
Rasmussen and Hancock [80, 88] 9 3 EN 1.4307
Gardner and Nethercot [81, 82] 30 8 EN 1.4301

Young and Lui [83] 16 2 EN 1.41621

Gardner et al. [84] 6 4 EN 1.4318
Ala-Outinen and Oksanen [85] 10 1 EN 1.4301

Talja and Salmi [86] 13 10 EN 1.4301
Talja [87] 8 6 EN 1.4318

Afshan et al. [75] 10 30 Multiple2

Bock et al. [89] 4 2 EN 1.4003
Theofanous and Gardner [90] 6 12 EN 1.4162

Zhao et al. [91] 18 3 Multiple3

Real [92] -4 1 EN 1.4301
Zhou and Young [93] 8 8 Multiple5

Zhou and Young [94] 34 4 EN 1.4162 and EN 1.4318
Zhou and Young [95] 33 8 Multiple6

Zhou and Young [96] 6 -4 EN 1.4162 and EN 1.4318
Jandera et al. [97] 14 6 EN 1.4301

Mirambell and Real [98] 1 1 EN 1.4301
Zhou and Young [99] 16 4 EN 1.4301
Talja and Hradil [100] 47 4 EN 1.4509

1 Supposed grade as only the nuance is specified.
2 Grades EN 1.4301, EN 1.4571, EN 1.4404, EN 1.4509, EN 1.4003 and EN 1.4162.
3 Grades EN 1.4301, EN 1.4571 and EN 1.4162.
4 No data available.
5 Grades EN 1.4301, EN 1.41621 and EN 1.43181.
6 Grades EN 1.4301, EN 1.4162 and EN 1.43181.
7 More data were available as some measurements were repeated.

Table 2.9: Summary of available geometrical and material properties measured on roll-formed stainless
steel square hollow sections.

b t ri e0 w0

297 305 288 38 41

Table 2.10: Number of experimental measurements conducted for each geometric parameter.
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Parameter
Austenitic Ferritic Duplex

Total
EN 1.4301 EN 1.4318 EN 1.4307 EN 1.4571 EN 1.4003 EN 1.4509 EN 1.4162

E f 40 14 5 7 10 16 29 121
σ0.2, f 44 14 5 7 10 16 29 125

n f 26 4 3 6 8 13 23 83
n
′
0.2,1.0, f 17 0 3 6 6 9 19 60

Ec 12 2 3 5 6 0 11 39
σ0.2,c 12 4 3 5 6 0 11 41
σu, f -1 14 32 -1 -1 15 -1 32
nc 12 2 2 2 4 0 11 33

n
′
0.2,1.0,c 12 0 2 2 1 0 9 26

1 Not necessary as enough data were available for σ0.2,c to fit a statistical distribution.
2 Not enough data to fit a statistical distribution.

Table 2.11: Number of experimental measurements conducted for each material parameters, classified per grade.
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3.2 Statistical distribution analysis

Statistical distribution fitting The distribution fitting study for each parameter was realised using
the package fitdistrplus of the statistical software R [101]. This powerful package, combined with the
statistical tools offered in R makes it easy and fast to fit the best distribution to a set of data. The
procedure adopted is described hereinbelow, and has been automated in an R script:

(i) The set of data to analyse is read from a text file containing the values.

(ii) Using the function fitdist of the package fitdistrplus, the script try to fit different statistical distri-
butions to the set of data. The tested distributions are the normal (NO), log-normal (LN), logistic
(LO), Weibull (WE), gamma (GA), beta (BE) and exponential (EX) distributions. They are the
most common and versatile distribution to fit to a set of data. For each tested theoretical distribu-
tion, the script returns a log-likelihood coefficient. The uniform distribution was not tested as no
log-likelihood is associated given with that distribution.

(iii) Then, the adopted distribution corresponds to the highest log-likelihood coefficient. A visual con-
trol is displayed, the p-value is calculated and the best distribution have been fitted

It is quite often admitted in statistics that a test (here Shapiro or Kolmogorov-Smirnov statistical
tests) is valid for a p-value superior to 5%. However, from a civil engineering point of view, the curve
fitting has much more importance. Indeed, suppose that a normal distribution is fitted to set of data with
a quite good curve fitting but with a wrong p-value. From a statistician point of view, the data generated
then are wrong, as they does not have the same mathematical properties, such as density etc. However,
from a civil engineering point of view, it is not really important if this is about a yield stress for instance.
Indeed, as long as the general look of the fitted distribution is correct, then the generated data will be
in a range observed experimentally, which therefore need to be considered in this project. Furthermore,
the p-value was quite often mis-computed, as ties were present in the initial set of data, which is not
appropriate for a distribution fitting. Finally, as the goal of this project is to generate ’random’ points,
best fitted distribution to a set of experimental data is the best way to guarantee a randomization of the
Monte Carlo process. This idea is crucial in this project and explain why it has been chosen to use
statistical distributions.

Geometrical parameters Using the described approach, distributions were fitted to the different ge-
ometrical inputs used in the Pyhton script. The results of this distribution fitting are summarised in
Table 2.12 and distribution parameters values are detailed in Table B.1. As outlined in Table 1.1, five ge-
ometrical parameters are subjected to uncertainties. Therefore, as it has been decided to study the ratios
measure/nominal, the ratios studied were bMC/bnom, hMC/hnom and tMC/tnom, where MC subscript refer
to Monte Carlo, so an imperfect value (as a measure), in opposition to the nom subscript which refers
to the nominal dimensions. As no nominal values exists for the inner radius ri, the ratio ri,MC/tMC was
studied as the inner radius is strongly linked to the thickness. The global imperfection factor e0,MC was
studied through the ratio LMC/e0,MC, as it has a tendency to increase with the length. Finally, the local
imperfection factor w0,MC was also studied.

Material parameters In a similar fashion, each material parameters used in the numerical model has
been studied, as well as the ultimate stress of the flat material σu, f which can be used to compute σ0.2,c
with Eq. 2.5. All the fitted distributions are listed in Table 2.13 and details are given in Table B.2. When
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not enough data were available, values recommended by Afshan et al. [75] were used in priority. As
some stainless steel grades are not present in Afshan et al. [75], the mean value of collected data was
used instead. For yield stress in the corner σ0.2,c, if data are also not available for σu, f , it has been decide
to use:

σ0.2,c = 1.15×σ0.2, f (2.9)

bMC/bnom hMC/hnom tMC/tnom ri,MC/tMC LMC/e0,MC w0,MC

LO LO1 LN GA LN LN
LO: Logistic, LN: Log-normal, GA: Gamma.

1 Same statistical distribution with same parameters as for b.

Table 2.12: Fitted statistical distribution for each geometrical parameters.
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Parameter
Austenitic Ferritic Duplex

EN 1.4301 EN 1.4318 EN 1.4307 EN 1.4571 EN 1.4003 EN 1.4509 EN 1.4162
E f LO LN WE GA WE LN LN

σ0.2, f GA GA LN WE LN LN NO
n f GA 4.731 5.831 LN LN LN LN

n
′
0.2,1.0, f LN 3.62 2.931 LN WE LN LO

Ec LN LN3 WE3 WE WE LN3 WE
σ0.2,c LN (1) 1.15 × σ0.2, f NO LN (1) NO
σu, f -4 WE -4 -4 -4 LN -4

nc WE 3.651 3.41 6.95 6.15 6.35 LN
n
′
0.2,1.0,c LN 3.62 5.351 2.65 35 3.15 LN

LO: Logistic, NO: Normal, LN: Log-normal, WE: Weibull, GA: Gamma.
(1) Equals to 0.83 × σu, f if then σ0.2,c > σ0.2, f . Else, equals 1.15 × σ0.2, f .
1 Mean value of collected data.
2 According to chemical composition, judged to be closer to EN 1.4404 and hence, chose according to Afshan et al. [75].
3 Same statistical distribution with same parameters as for E f .
4 Not necessary as enough data were available for σ0.2,c to fit a statistical distribution.
5 Chose according to Afshan et al. [75].

Table 2.13: Fitted statistical distribution for each material parameters or value adopted in case not enough data were available, classified per
grade.
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3.3 Data generation

Knowing the distributions of each geometric and material parameters, the Monte Carlo data generation
is really fast. The goal of the Monte Carlo data generation is now to cover a broad range of column
slenderness ranging from 0.1 to 3 for the overall slenderness λ0 and having b/t ratio (directly related to
the plate local slenderness λl = λp see Eq. 1.2) included between 10 and 60. This has been done using
anew a R script. The steps of the script are detailed hereinbelow:

(i) Firstly, a nominal width bnom (and therefore a nominal height hnom) is picked among some usual
stainless steel square hollow section dimensions ranging from 30 to 200mm for each generated
point. From this, nominal other dimensions (tnom and Lnom) respecting the fixed conditions on the
slenderness values are generated. 986 points were computed at this step and the nominal slender-
ness grid generated is displayed Fig. 2.4(a). In order to calculate these slenderness, as no material
parameters have been fixed yet, average values (based on average measured values) are used for the
yield stress and the Young modulus.

(ii) Monte Carlo process is applied to the nominal points with the help of the fitted distributions and
then, a grid named the geometric grid is generated, displayed Fig. 2.4(b). The material parameters
are not fixed and still based on average measured values. It can be seen that the Monte Carlo
processing of the dimension values does not have a strong impact on the slendernesses.

(iii) Finally, based on the occurrence of each stainless steel grade in literature, a random choice of
stainless steel grade is done. In a way, this does not reflect the reality, but data giving the occurrence
of usage of different stainless steel square hollow sections grades in civil engineering has not been
found. The pick probability associated to first the nuance of stainless steel and then the grade within
a fixed nuance are detailed in Table 2.14. Once the nuance has been chosen, material parameters
respecting the previously fitted distribution are computed and the final grid is displayed Fig. 2.5 is
generated.

Austenitic [50%] Ferritic [25%] Duplex [25%]
EN 1.4301 [50%]

EN 1.4003 [50%]
EN 1.4162 [100%]

EN 1.4318 [25%]
EN 1.4307 [12.5%]

EN 1.4509 [25%]
EN 1.4571 [12.5%]

Table 2.14: Stainless steel grade selection chosen probability.
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Figure 2.4: Grid generation during the Monte Carlo data generation.
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Figure 2.5: Final Monte Carlo grid.

Improvement of existing design rules for cold-formed stainless steel hollow sections under compression forces
using numerical modelling and Monte Carlo simulations



Chapter 3

Simulation results

In this third chapter, the obtained results from numerical simulations are presented. An equation, formu-
lated in a Direct Strength Method fashion is given for design according to the obtained results.

Contents
1 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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48 Simulation results

1 Numerical results

Next to the Monte Carlo data generation, all the generated points were submitted to Iceberg using the
Python script described in Section 2.1 of Chapter 2. The whole submission took three days and due to
errors with the Iceberg server or with the Python script, only 507 over the 986 points submitted actually
worked. The results are displayed in Fig. 3.1 with λl and A calculated using the nominal dimensions of
each column. The material properties (E and fy) were chosen from indications of BS EN 10088-4 [102].

It can be seen that the points are very spread, with the ratio Fu,FE/A fy ranging from 0.06 to 3.77.
The mean of this ratio is equal to 0.97 with a COV equals to 0.67. It can also be noted that the maximum
slendernesses (λl > 1.35) are obtained only for duplex nuances. This is explained by the high yield stress
value recommended for this nuance by the BS EN 10088-4 [102], equals to 530 MPa, which is two times
higher than for the other nuances.

2 Recommendation for design guidance

As it is a very convenient method to use (see Section 2.4.2 of Chapter 1), the proposed design equation
is in a Direct Strength Method fashion, given Eq. 3.1. Ncl,d is the design local and flexural buckling
resistance of the column and the local slenderness λl is computed using Eq. 1.2 (λl = λp).

Ncl,d =


1 for λl ≤ 0.781

1
λ

0.9
l

(
1.05− 0.2

λ
0.9
l

)
for λl > 0.781

(3.1)

Using this equation, the mean of Fu,FE/Ncl,d is equal to 0.94 with a COV equals to 0.59 for the 507
result points obtained. With the help of recommendations of Blum [103], a reliability analysis has been
conducted. The resistance factor Φ is equal to 0.36, which is low (taget values are often superior to 0.9).
Choosing other values for the coefficients in Eq. 3.1 could have improved the resistance factor but also
increased the COV, which is not desirable. Indeed, the COV obtained for the current equation is high,
corresponding to the wide spread of the data.

Improvement of existing design rules for cold-formed stainless steel hollow sections under compression forces
using numerical modelling and Monte Carlo simulations



Recommendation for design guidance 49

0.5 1.0 1.5

0
1

2
3

4

λl

F
u,

F
E

A
f y

Austenitic                
Ferritic
Duplex
Proposed equation

Figure 3.1: Results of submission.

Improvement of existing design rules for cold-formed stainless steel hollow sections under compression forces
using numerical modelling and Monte Carlo simulations



50 Simulation results

Improvement of existing design rules for cold-formed stainless steel hollow sections under compression forces
using numerical modelling and Monte Carlo simulations



Conclusion and outlooks

Stainless steel is a reliable material, combining better mechanical properties and corrosion resistance
than carbon steel. The chemical compositions of the four main grades of stainless steel were detailed,
along with the uses and properties of cold-formed stainless steel columns. As the aim of this project is to
develop improved design rules for the buckling of these columns, the existing design rules of the Euro-
pean and North-American standards were presented. Therefore, explanations about the Effective Width
Method (EWM), the Direct Strength Method (DSM) and others designing methods are given, along with
the advantages and drawbacks of each methods. Finally, the Monte Carlo method, and its link with the
data generation of this project was introduced.

A validated numerical model of the problem has been built on Abaqus. Material modelling, geomet-
ric imperfections and numerical parameters have been chosen with care and are discussed in this report.
A Python script (built with the Abaqus model), automating the submission of a column has been built
and validated to 67 previously conducted tests. Using a Monte Carlo method combined concurrently
with a statistical analysis of experimental measurements, a set of 986 inputs was generated, covering
realistic slendernesses from 0.2 to 2.0 for local slenderness λl and from 0.1 to 3.0 for overall slenderness
λo. These inputs were submitted to Iceberg with the Python script and, due to erors, 507 results were
obtained. From these result values, a design equation, respecting the Direct Strength Method fashion
was proposed. Leading a reliability analysis, the resistance factor Φ is equal to 0.36, which is not high
enough to guarantee safety using this equation. Other equations could have been proposed, but leading
to a larger spread of the results. Therefore, this equation has been considered to be the best agreement
between safety and spread of the results.

With a view of the different number of existing nuances and grades of stainless steel, it could be
in the future desirable to propose different equations for each nuance of stainless steel. Indeed, as the
results are very spread here, it is ambitious to gather them all together with one equation.

Among the other points to improve, the residual stresses resulting from seam-welding operation
could be added. Currently, no proper models have been proposed for stainless steel, but it is possible
to use some existing ones for carbon steel. In the Python script, some changes could be applied so no
interpenetration occurs, leading to more results at the end. And in order to improve the accuracy of the
results, more experimental data should be available. A new campaign of experimental measures, with
the idea of a statistical fitting afterward could be done.

In a personal capacity, this internship has enabled me to acquire an important autonomy on a research
project, very important for a future Ph.D., as I mainly conducted the project by myself. The later was
very interesting to me as it combined an important literature work, therefore very instructive, a numerical
modelling and a completely new approach to design rules formulation. The topic, namely the buckling
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of cold-formed stainless steel square hollow sections was moreover very pertinent, as the use of stainless
steel is relatively low compared to carbon steel in construction, partly due to too conservative design
rules combined with higher initial material costs. The meetings with my supervisors finally helped to
focus our ideas for the next steps of the project. A final timeline of the project is given in Table 3.1.

Month Project step
October-November Literature review and familiarisation with the FE software.
December - January Building an FE model and verification against existing experimental data.
February - May Python scripting adn verification against existing experimental data.
May - June Monte Carlo data generation.
July Simulations and design rules.
July-August Final report writing.

Table 3.1: Updated timeline of the project.
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Nomenclature

α imperfection factor (EN)
β coefficient (ASCE)
χ reduction factor for relevant buckling

mode (EN)
∆u,FE numerical buckling displacement at

mid-length
∆u,Test experimental buckling displacement at

mid-length
∆u,X ,FE numerical buckling displacement at

mid-length along the X-axis
∆u,Y,FE numerical buckling displacement at

mid-length along the Y-axis
γM0 partial factor for resistance of cross-

sections (EN)
γM1 partial factor for resistance of members

to instability (EN)
λ slenderness factor (ASCE)
λb conversion slenderness (Shu et al.

method)
λd distortional slenderness (DSM)
λl local slenderness
λo overall slenderness
λp plate slenderness ratio (EWM)
ν coefficient of Poisson
λ non-dimensional slenderness (EN)
λ0 limiting slenderness (EN)
φ value to determine the reduction factor

χ (EN)
φc resistance factor for concentrically

loaded compression member (ASCE)
ρ reduction factor (EN)
σ normal stress
σ0.01 proof stress corresponding to a 0.01%

plastic strain
σ0.2,c yield stress in the corner

σ0.2 yield stress (corresponding to a 0.2%
plastic strain)

σ1.0 1.0% stress (corresponding to a 1.0%
plastic strain)

σcom,Ed,ser maximum design compressive stress at
serviceability limit state (EN)

σcrl critical plate buckling stress (EN)
σcr elastic critical buckling stress
σex buckling stress about x-axis (ASCE)
σnom engineering stress
σtrue true stress
σt torsional buckling stress (ASCE)
σu, f ultimate stress of the flat material
θ rotation
ε strain
ε

pl
ln log plastic strain

εnom engineering strain
εt0.2 total strains at σ0.2
εt1.0 total strains at σ1.0
A gross section area
Ae f f effective area
b plate element width or column width
be f f plate element effective width (EWM)
bMC Measured width for Monte Carlo simu-

lation
bnom Nominal width
Cw torsional warping constant of cross-

section (ASCE)
d corner enhancement extend
E modulus of elasticity
E0 initial modulus of elasticity
e0 global imperfection factor
Et tangent modulus of elasticity in com-

pression (ASCE)
e0,MC Measured global imperfection factor
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for Monte Carlo simulation
E0.2 tangent stiffness at σ0.2
f0 elastic buckling strength (DSM)
Fn nominal buckling stress (ASCE)
fy yield stress (Fy in ASCE)
Fcr plate elastic buckling stress (ASCE)
fod elastic distortional buckling strength

(DSM)
Fu,el,FE numerical elastic buckling load
Fu,el Euler elastic buckling load
Fu,FE numerical buckling load
Fu,Test experimental buckling load
G0 initial shear modulus (ASCE)
h depth of the column
hMC Measured height for Monte Carlo sim-

ulation
hnom Nominal height
J St. Venant torsion constant (ASCE)
K effective length factor (ASCE)
k plate buckling coefficient (EWM)
Kt effective length factor for torsion

(ASCE)
Kx effective length factor for bending

about x-axis (ASCE)
L unbraced length of member
Lt unbraced length of compression mem-

ber for torsion (ASCE)
Lx unbraced length of compression mem-

ber for bending about x-axis (ASCE)
LMC Measured length for Monte Carlo sim-

ulation
M moment
Mc size of the element in the corner part
M f size of the element in the flat part
Mel elastic moment (EN)

Mpl plastic moment (EN)
N number of element
n strain-hardening exponent
n
′
0.2,1.0,c second strain-hardening exponent in

the corner part
n
′
0.2,1.0, f second strain-hardening exponent in

the flat part
n
′
0.2,1.0 second strain-hardening exponent

Nu ultimate capacity
Ny yield strength
Nb,Rd design buckling resistance of the com-

pression member (EN)
Nc,Rd design uniform compression strength

(EN)
Ncd distortional buckling strength (DSM)
Ncl,d design local and flexural buckling resis-

tance of the column
NEd design compression force (EN)
Pn nominal axial strength of member

(ASCE)
r radius of gyration of full, unreduced

cross-section (ASCE)
r0 polar radius of gyration of cross-section

about shear centre (ASCE)
ri inner radius
rx radius of gyration of cross-section

about x-axis (ASCE)
t thickness of the plate element or of the

column
tMC Measured thickness for Monte Carlo

simulation
tnom Nominal thickness
w0 local imperfection factor
w0,MC Measured local imperfection factor for

Monte Carlo simulation

Note that EWM (Effective Width Method), EN (Eurocode), ASCE (American Society of Civil En-
gineers) and DSM (Direct Strength method) respectively refer to notations use in Section 2.3.1, 2.3.2,
2.4.1and 2.4.2.
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[57] T. von Kármán, E. E. Sechler, and L. H. Donnell, “The Strength of Thin Plates in Compression,”
Transactions of the American Society of Mechanical Engineers, vol. 139, pp. 53–57, 1932.

[58] G. Winter, Strength of Thin Steel Compression Flanges. Cornell University, 1947.

[59] EN 1993-1-5, “Eurocode 3 – Design of steel structures – Part 1-5: General rules – Plated structural
elements,” 2006.

[60] E. de Miranda Batista, “Effective section method: A general direct method for the design of steel
cold-formed members under local-global buckling interaction,” Thin-Walled Structures, vol. 48,
no. 5, pp. 345–356, 2010.

[61] N. R. Baddoo and B. A. Burgan, Structural Design of Stainless Steel. The Steel Construction
Institute, 2002.

[62] L. Gardner and M. Theofanous, “Discrete and continuous treatment of local buckling in stainless
steel elements,” Journal of Constructional Steel Research, vol. 64, no. 11, pp. 1207 – 1216, 2008.
International Stainless Steel Experts Seminar.

[63] Euro Inox, “Design Manual for Structural Stainless Steel - Commentary (Second Edition),” 2003.

[64] S.-H. Lin, W.-W. Yu, T. V. Galambos, and E. Wang, “Revised ASCE specification for the design of
cold-formed stainless steel structural members,” Engineering Structures, vol. 27, no. 9, pp. 1365
– 1372, 2005.

[65] S. Lau and G. Hancock, “Distortional Buckling Formulas for Channel Columns,” Journal of Struc-
tural Engineering, vol. 113, no. 5, pp. 1063–1078, 1987.

[66] Y. Kwon and G. Hancock, “Tests of Cold-formed Channels with Local and Distortional Buckling,”
Journal of Structural Engineering, vol. 118, no. 7, pp. 1786–1803, 1992.
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Appendix A

Mesh convergence study

Figure A.1: Mesh convergence study.
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Appendix B

Distribution fitting study

Parameter Distribution p-value 1st parameter 2nd parameter
bMC/bnom LO <2.2e-161 location = 1.001329120 scale = 0.002248568
hMC/hnom LO2 <2.2e-162 location = 1.0013291202 scale = 0.0022485682

tMC/tnom LN <2.2e-161 meanlog = -0.02770792 sdlog = 0.03490599
ri,MC/tMC GA 6.05e-6 shape = 9.421589 rate = 8.501117

LMC/e0,MC LN <2.2e-161 meanlog = 8.2283640 sdlog = 0.8140854
w0,MC LN <2.2e-161 meanlog = -2.4956198 sdlog = 0.7356126

LO: Logistic, LN: Log-normal, GA: Gamma.
1 Error in the calculation of the p-value by R.
2 Same statistical distribution with same parameters as for b.

Table B.1: Details of fitted statistical distribution for each geometrical parameters.

Parameter Grade Distribution p-value 1st parameter 2nd parameter
E f EN 1.4301 LO <2.2e-161 location = 194562.764 scale = 6052.423
E f EN 1.4318 LN 1.38e-12 meanlog = 12.1392427 sdlog = 0.0723124
E f EN 1.4307 WE 0.8835 shape = 128.0892 scale = 195681.2779
E f EN 1.4571 GA 0.7929 shape = 2841.346 rate = 0.01494719
E f EN 1.4003 WE 0.9543 shape = 13.18808 scale = 204722.93506
E f EN 1.4509 LN 2.53e-14 meanlog = 12.18696608 sdlog = 0.04732482
E f EN 1.4162 LN <2.2e-161 meanlog = 12.2177309 sdlog = 0.0411148

σ0.2, f EN 1.4301 GA 0.3342 shape = 47.6650100 rate = 0.1047185
σ0.2, f EN 1.4318 GA 0.7299 shape = 41.99725063 rate = 0.07213275
σ0.2, f EN 1.4307 LN <2.2e-161 meanlog = 5.9518348 sdlog = 0.2115851
σ0.2, f EN 1.4571 WE 0.8051 shape = 9.243393 scale = 418.041707
σ0.2, f EN 1.4003 LN <2.2e-161 meanlog = 6.0861248 sdlog = 0.1177779
σ0.2, f EN 1.4509 LN <2.2e-161 meanlog = 6.20958687 sdlog = 0.05266284
σ0.2, f EN 1.4162 NO 0.0463 mean = 634.10345 sd = 72.31032

n f EN 1.4301 GA 0.5718 shape = 21.07948 rate = 4.23849
n f EN 1.4571 LN 2.20e-7 meanlog = 1.8021933 sdlog = 0.2217027

Continued on next page
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Table B.2 – Continued from previous page
Parameter Grade Distribution p-value 1st parameter 2nd parameter

n f EN 1.4003 LN 1.13e-6 meanlog = 2.0067343 sdlog = 0.3192104
n f EN 1.4509 LN 1.95e-10 meanlog = 2.0544909 sdlog = 0.3290943
n f EN 1.4162 LN <2.2e-161 meanlog = 1.6955987 sdlog = 0.2610013

n
′
0.2,1.0, f EN 1.4301 LN 1.61e-9 meanlog = 1.0830978 sdlog = 0.1635712

n
′
0.2,1.0, f EN 1.4571 LN 9.683e-4 meanlog = 0.90815009 sdlog = 0.05377268

n
′
0.2,1.0, f EN 1.4003 WE 0.9507 shape = 14.531172 scale = 2.564985

n
′
0.2,1.0, f EN 1.4509 LN 9.448e-4 meanlog = 0.9060007 sdlog = 0.5776728

n
′
0.2,1.0, f EN 1.4162 LO 1.59e-13 location = 2.6818030 scale = 0.2505802

Ec EN 1.4301 LN 7.55e-11 meanlog = 12.21080064 sdlog = 0.04637593
Ec EN 1.4318 LN2 1.38e-122 meanlog = 12.13924272 sdlog = 0.07231242

Ec EN 1.4307 WE2 0.88352 shape = 128.08922 scale = 195681.27792

Ec EN 1.4571 WE 0.4282 shape = 28.13099 scale = 189755.15603
Ec EN 1.4003 WE 0.7512 shape = 11.26199 scale = 209939.35707
Ec EN 1.4509 LN2 2.53e-142 meanlog = 12.186966082 sdlog = 0.047324822

Ec EN 1.4162 WE 0.8758 shape = 70.77724 scale = 209298.92817
σ0.2,c EN 1.4301 LN 3.33e-16 location = 608.45487 scale = 30.83762
σ0.2,c EN 1.4571 NO 0.8959 mean = 527.00000 sd = 21.30728
σ0.2,c EN 1.4003 LN <2.2e-161 meanlog = 6.29324598 sdlog = 0.03962735
σ0.2,c EN 1.4162 NO 0.3287 mean = 818.45455 sd = 59.21204
σu, f EN 1.4318 WE 0.3625 shape = 7.9233 scale = 931.8442
σu, f EN 1.4509 LN 1.87e-13 meanlog = 6.28320012 sdlog = 0.04022548
nc EN 1.4301 WE 0.7524 shape = 4.370980 scale = 5.726338
nc EN 1.4162 LN 5.58e-09 meanlog = 1.8636704 sdlog = 0.2296406

n
′
0.2,1.0,c EN 1.4301 LN 4.52e-08 meanlog = 1.6751029 sdlog = 0.7652542

n
′
0.2,1.0,c EN 1.4162 LN 8.01e-07 meanlog = 1.5099570 sdlog = 0.2274294

LO: Logistic, NO: Normal, LN: Log-normal, WE: Weibull, GA: Gamma.
1 Error in the calculation of the p-value by R.
2 Same statistical distribution with same parameters as for E f .

Table B.2: Details of fitted statistical distribution for each material
parameters, classified per grade.
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Figure B.3: Histograms and theoretical densities of modulus of elasticity E f in the flat parts for austenitic
grades.
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Figure B.4: Histograms and theoretical densities of modulus of elasticity E f in the flat parts for ferritic
and duplex grades.
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Figure B.5: Histograms and theoretical densities of yield stress σ0.2, f in the flat parts for austenitic
grades.

Improvement of existing design rules for cold-formed stainless steel hollow sections under compression forces
using numerical modelling and Monte Carlo simulations



72 Distribution fitting study

σ0.2,f

D
en

si
ty

300 350 400 450 500 550 600 650

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Log−normal

(a) EN 1.4003 (Ferritic).

σ0.2,f

D
en

si
ty

400 450 500 550 600

0.
00

0
0.

00
5

0.
01

0
0.

01
5 Log−normal

(b) EN 1.4509 (Ferritic).

σ0.2,f

D
en

si
ty

400 500 600 700 800 900

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Normal

(c) EN 1.4162 (Duplex).

Figure B.6: Histograms and theoretical densities of yield stress σ0.2, f in the flat parts for ferritic and
duplex grades.
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Figure B.8: Histograms and theoretical densities of strain-hardening exponent n f in the flat parts for
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Figure B.10: Histograms and theoretical densities of second strain-hardening exponent n
′
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flat parts for ferritic and duplex grades.
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Figure B.11: Histograms and theoretical densities of modulus of elasticity Ec in the corner parts for
austenitic grades.
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Figure B.12: Histograms and theoretical densities of modulus of elasticity Ec in the corner parts for
ferritic and duplex grades.
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Figure B.13: Histograms and theoretical densities of the ultimate stress σu, f in the flat parts for grades
EN 1.4318 and grade 1.4509.
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Figure B.14: Histograms and theoretical densities of yield stress σ0.2,c in the corner parts for austenitic
grades.
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Figure B.15: Histograms and theoretical densities of yield stress σ0.2,c in the corner parts for ferritic and
duplex grades.
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Figure B.16: Histograms and theoretical densities of strain-hardening exponent nc in the corner parts
for austenitic grades.

Improvement of existing design rules for cold-formed stainless steel hollow sections under compression forces
using numerical modelling and Monte Carlo simulations



83

nc

Measurements
Literature value = 6.1

4 6 8 10 12 14 16 18

(a) EN 1.4003 (Ferritic).

nc

Measurements
Literature value = 6.3

0 2 4 6 8 10

(b) EN 1.4509 (Ferritic).

nc

D
en

si
ty

2 4 6 8 10 12 14

0.
0

0.
1

0.
2

0.
3

0.
4

Log−normal

(c) EN 1.4162 (Duplex).

Figure B.17: Histograms and theoretical densities of strain-hardening exponent nc in the corner parts
for ferritic and duplex grades.
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Figure B.18: Histograms and theoretical densities of second strain-hardening exponent n
′
0.2,1.0,c in the

corner parts for austenitic grades.
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Figure B.19: Histograms and theoretical densities of second strain-hardening exponent n
′
0.2,1.0,c in the

corner parts for ferritic and duplex grades.
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