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1 Introduction to gravity currents

1.1 Generalities and definitions

Gravity currents refer to flows in a gravitational field. Such flows are driven by a density
difference where a denser fluid propagates through a lighter fluid, and the motion is therefore
mainly in the horizontal direction. For example, pouring water on a plane forms a gravity
current because of the density difference between water and air.

From pyroclastic flows to submarine avalanches, gravity currents occur in a wide variety of
natural scenarii. Therefore it is essential to study such currents.

Gravity currents are driven by gravity. The difference in ρ between the fluids creates a pres-

sure difference in the horizontal x-direction
∂p

∂x
=
−−→
grad(p).−→ex. The gravity effect associated

with the density difference is referred to as the reduced gravity commonly g′.

Let ρc be the density of the current fluid, ρa the density of the ambient fluid and ∆ρ
the density differece ∆ρ = ρc − ρa. The reduced gravity is therefore defined as :

g′ =
|∆ρ|

max(ρa, ρc)
g

Usually ρc is greater than ρa thus g′ =
|∆ρ|

max(ρa, ρc)
g =

ρc − ρa
ρc

g

Figure 1.1: Gravity current propagating from left to right with ρred > ρblue

Theoretical modelling for gravity currents is possible through the use of approximations.
The most common approximation for buoyancy driven flows is the Boussinesq approximation
which is detailed in the following.
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1.2 The Navier-Stokes equations

The governing equations for such flows are the Navier-Stokes equations for incompressible
flow of Newtonian fluids.

The first, the mass continuity equation regardless of the flow assumptions. It describes
the transport of a conserved quantity, in this case, it is mass.

∂ρ

∂t
+∇(ρv) = 0

The general form Navier-Stokes momentum equations is:

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ fv + ρg + µ∇2v

On the right-hand side of the momentum equations are the forces applied to the fluid. They
belong to different categories :

� The internal forces : pressure and viscosity. The pressure exists even if the fluid is at
rest, and is also called hydrostatic pressure.
The viscosity of a fluid measures its resistance to gradual deformation by shear stress
or tensile stress.

� The body forces such as gravity or Lorentz force in presence of magnetic field.
� Surface forces : most of the time they are due to boundary conditions.

In the Cartesian coordinate system the equations for an incompressible flow are :

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0

ρ

(
∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

)
= −∂p

∂x
+ ρgx + µ

(
∂2vx
∂x2

+
∂2vx
∂y2

+
∂2vx
∂z2

)
+ ρfvx

ρ

(
∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

+ vz
∂vy
∂z

)
= −∂p

∂y
+ ρgy + µ

(
∂2vy
∂x2

+
∂2vy
∂y2

+
∂2vy
∂z2

)
+ ρfvy

ρ

(
∂vz
∂t

+ vx
∂vz
∂x

+ vy
∂vz
∂y

+ vz
∂vz
∂z

)
= −∂p

∂z
+ ρgx + µ

(
∂2vz
∂x2

+
∂2vz
∂y2

+
∂2vz
∂z2

)
+ ρfvz

To this day, solutions to the Navier-Stokes equations are yet not proven (existence, unicity),
they are one of the most important open problems in mathematics.
Therefore, except for simple cases, numerical simulations are the only way to show the be-
havior of the flow.
Moreover, pressure is a difficult variable to manipulate. In two dimensions it is possible to
eliminate pressure by taking the curl of the Navier-Stokes equations and at the expense of
introducing the derivatives of velocity.

With such a nonlinear system of partial differential equations, assumptions and approxima-
tions about the flow and the use of the vorticity field may be needed, as it will be shown in
the following section and chapters.
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1.3 Boussinesq approximation

The Boussinesq approximation states that density differences are relatively small. In a two-
fluid case it means that ρc ≈ ρa. Roughly it means that the density difference between ρa
and ρc is used in the buoyancy term of the momentum equation only. Boussinesq flows are
common in nature, industry and the built environment.
This approximation is extremely accurate and makes the related mathematics and physics
much easier to handle. Indeed their mathematical analysis, Navier-Stokes simulations and
experimental realizations are simpler. Moreover their interpretation covers a broader range
of boundary conditions.
Non-Boussinesq systems are still awaiting a comprehensive investigation.

The essential idea in the Boussinesq approximation is the elimination of the vertical coordi-
nate from the flow equations which was first done by Joseph Boussinesq in 1871, to construct
an approximate solution for the solitary wave (or wave of translation). Subsequently, in 1872,
Boussinesq derived the equations known nowadays as the Boussinesq equations.

1.4 Vorticity

1.4.1 Definition

The vorticity is a pseudovector field that describes the local spinning motion of a continuum
near a point i.e its tendancy to rotate.

Mathematically this vector field denoted ω is defined as the curl (rotational) of the ve-
locity field v.

ω = ∇× v

In Cartesian coordinates : ω =
(

∂vz
∂y −

∂vy
∂z ,

∂vx

∂z −
∂vz

∂x ,
∂vy

∂x −
∂vx

∂y

)

Roughly, the vorticity tells how the velocity vector changes when one moves by an infinites-
imal distance in a direction perpendicular to it.

1.4.2 Vorticity equation

Let’s rewrite the Navier-Stokes momentum equations assuming that the gravity is the only
body force.

∂v

∂t
+ v · ∇v = −1

ρ
∇ (p+ gz) + ν∇2v

By taking the curl of the Navier-Stokes equations.

∇× ∂v

∂t
+∇× (v · ∇v) = −∇×

(
1

ρ
∇ (p+ gz)

)
+∇×

(
ν∇2v

)
With appropriate smoothness properties :

∇× ∂v

∂t
=

∂

∂t
(∇× v) =

∂ω

∂t

In the same manner the last term on the right becomes

∇×
(
ν∇2v

)
= ν∇2ω
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The gravity term is −∇×∇(gz) = 0

Let’s take a closer look to the following term :

−∇×
(

1

ρ
∇p
)

= −1

ρ
∇×∇p− 1

ρ2
∇ρ×∇p

The following theorem states that :

∀X ∈ R3 , ∇×∇X = 0

Therefore the previous equality becomes :

−∇×
(

1

ρ
∇p
)

= − 1

ρ2
∇ρ×∇p

It is possible to show that we have the following result :

∇× (v · ∇v) = ∇×∇
(
v2

2

)
−∇× ((∇× v)× v)

Using the theorem stated above :

∇× (v · ∇v) = −∇× ((∇× v)× v)

Therefore the vorticity equation becomes :

∂ω

∂t
= ∇× ((∇× v)× v)− 1

ρ2
∇ρ×∇p+ ν∇2ω

This equation can still be modified. Indeed in the previous equation the first and seconds
terms on the right hand side of the equation can be simplified for incompressible flows.
Considering that gravity is in the −y direction.

The vorticity equation is therefore.

∂ω

∂t
+ v · ∇ω = −g′ ∂ρ

∗

∂x
ez + ν∇2ω

where ρ∗ =
ρ− ρa
ρc − ρa

(1.1)
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2 Circulation-based modelling for
gravity currents

2.1 Circulation-based integration

If we take a closer look Eq. 1.1 we clearly notice that it is a diffusion equation.
This rules the diffusion of vorticity in a specific volume or surface.
It exactly means that the vorticity variation is generated by advection due to the velocity
field, it is also due to the baroclinic term in the equation.
Using such an equation is convenient because of the way it can be integrated.

As it is above-mentioned equation 1.1 is a diffusion equation that can be integrated over a
control volume or a control surface.

For the following, all the cases are going to be studied in steady-state i.e
∂ω

∂t
= 0.

Equation 1.1 therefore becomes :

v ·∇ω = −g′ ∂ρ
∗

∂x
+ ν∇2ω

where ρ∗ =
ρ− ρa
ρc − ρa

(2.1)

Let’s integrate equation 2.1 over control surface called A.∫∫
A
v ·∇ω dA =

∫∫
A
−g′ ∂ρ

∗

∂x
dA +

∫∫
A
ν∇2ω dA (2.2)

Now, the divergence theorem states that :∫∫
A
ν∇2ω dA =

∮
Γ

ν ∇ω · n dΓ

For any scalar field g and any vector field F , the divergence theorem leads to :∫∫
A

(F ·∇g + g (∇ · F )) dA =

∮
Γ

gF dΓ

Now by substituting g = ω and F = v and using the incompressible flow assumption
∇ · v = 0 the first term of equation 2.2 becomes :∫∫

A
v ·∇ω dA =

∮
Γ

ωv · n dΓ
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So equation 2.2 turns into :∮
Γ

ωv · n dΓ =

∫∫
A
−g′ ∂ρ

∗

∂x
dA +

∮
Γ

ν ∇ω · n dΓ (2.3)

Equation 2.3 therefore states that the rate at which vorticity is convected out of the control
volume at the downstream boundary equals the rate at which it is convected into the control
volume at the upstream boundary, plus the rate at which it is generated inside the control
volume as a result of baroclinic vorticity production.

This approach has advantadge of removing the pressure variable from the analysis. If in-
formation about the pressure is needed, we can solve the x−momentum equation at a later
stage.
Indeed the vorticity-based modelling approach does not require the use of Bernoulli’s prin-
ciple nor the use of empirical energy assumption.
In the following, the Reynolds number will be sufficiently high Re ≥ 250 as shown by M.M.
Nasr-Azadani and E. Meiburg [6] so the viscous term can be neglected in the remaining.

2.2 Application : Gravity current propagating into shear

2.2.1 Formulation of the problem

In order to understand the use of the circulation based modelling for gravity current, the
following example will deal with a gravity current propagating into shear. Evaluating the
front velocity of a gravity current was a task that many scientist investigated (cf. Von
Karman [2] & Benjamin [3]). Indeed knowing this velocity may be helpful when it comes to
sizing immersed infrastructures to prevent them from being destroyed by gravity currents,
etc. Let us consider a gravity current flowing from right to left with an unknown front
velocity Ug, as described in Fig 2.1.

Figure 2.1: Gravity current propagating from right to left with a front velocity Ug

The equation of continuity along the streamline tube provide the following equation

uidyi = uodyo (2.4)

Now, the conservation of vorticity along the streamline tube provide

−uoωodyo − (−uiωidyi) = −g′ ∆ρ

ρc − ρa
(y0 − yi)

Therefore we obtain

uiωidyi − uoωodyo = −g′ ∆ρ

ρc − ρa
(y0 − yi)

12



Using the relation ∆ρ =
dρi
dyi

dyi we can modify the conservation of vorticity

uiωidyi − uoωodyo = −g′
dρi
dyi

dyi

ρc − ρa
(y0 − yi) (2.5)

Now let us define the following substitution y0 = yi + ξ(yi), therefore

dy0 = dyi + ξ′(yi)dyi where ξ′(yi) =
dξ

dyi

(2.6)

Hence we can have
dy0

dyi
= 1 + ξ′

Using equation 2.4 we notice that

u0(y0) = ui(yi)

(
dy0

dyi

)−1

=
ui(yi)

1 + ξ′(yi)
(2.7)

Now let us compute ω0(y0) using the definition of ω = −du

dy
. Therefore we have

ω0(y0) = −du0

dy0
=

du0

dyi

dyi
dy0

= − 1

1 + ξ′
du0

dyi
(2.8)

Notice that we know u0(y0) = ui(yi)
1

1 + ξ′
, therefore ω0(y0) = − 1

1 + ξ′
d

dyi

(
ui

1 + ξ′

)
=

− 1

1 + ξ′

dui
dyi

(1 + ξ′)− ξ′′ui(yi)

(1 + ξ′)
2

such that ω0(y0) = − 1

(1 + ξ′)
3

[
dui
dyi

(1 + ξ′)− ξ′′ui(yi)
]

Now replacing ω0 in equation 2.5 we obtain the following non-linear ODE

ξ′′u(yi) + u′i(yi)
[
(1 + ξ′)

3 − (1 + ξ′)
]
− (1 + ξ′)

3
[
ξ

g′ρ′i
ui(yi) (ρc − ρa)

]
= 0 (2.9)

Now, let us take a look at the boundary conditions. It is important to note that it is a
second order non-linear ODE, therefore we need two boundary conditions.

We have ξ(yi = 0) = h (AOA) and ξ(yi = H) = 0 (BB′) .

In order to determine ξ we still need a condition on its first derivative. Indeed, the vorticity

conservation across the interface (OA) gives
U2

0 (h)

2
= g′h

ρc − ρi(0)

ρc − ρa
.

Using equation 2.7 we notice that u0(h) =
ui(yi = 0)

1 + ξ′(yi = 0)

ξ′(yi = 0) =
ui(yi = 0)

u0(h)
− 1
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Note that we have three boundary conditions while we only need two. One of them will
allow us to determine Ug the velocity of the gravity current.
Therefore we have the following Cauchy problem.



ξ′′u(yi) + u′i(yi)
[
(1 + ξ′)

3 − (1 + ξ′)
]
− (1 + ξ′)

3

[
ξ

g′ρ′i
ui(yi) (ρc − ρa)

]
= 0

ξ(yi = 0) = h (AOA) and ξ(yi = H) = 0 (BB′)

ξ′(yi = 0) =
ui(yi = 0)

u0(h)
− 1

(2.10)

2.2.2 Numerical Solution to determine Ug

The Cauchy problem 2.10 is non-linear and cannot be solve with an analytical solution.
Hence, the use of an algorithm is the only way to approach the value of Ug∗ to respect the
boundary conditions.

With MATLAB it is possible to solve Ordinary Differential Equations (ODEs) using the
function ODE45 function.
As it above-mentionned Ug is the unknown to be determined but to solve the problem Ug

is needed.
The following algorithm is similar to a do while loop in C++.
The procedure has to be started with an initial ”guess” of Ug and while the condition
ξ(yi = H) = 0 is not satisfied then it will change the initial guess.

Indeed if ξ(yi = H) > 0, it means that the slope at yi = 0, which is nothing but Ug,
is too important so it has to be reduced. ξ(yi = H) < 0, it means that the slope at yi = 0
is too low so it has to be increased.

The following procedure has been written with dimensionless equations and in the case
where ρi is uniform which means ρ′i = 0. The velocity profile is linear and its expression is

u(y) = Ug +
1

2
∆U(1− 2y)

We consider a layer height of h = 0.2 and a total height (control volume) H = 1

Listing 2.1: sample code

% PROCEDURE TO FIND Ug

Ug = 0.7; % Arbitrary choice of Ug
DeltaU = 0.4; % We choose Delta U however we want for the linear profile
h=0.2; % Current height, it doesn't matter how it is chosen.
H=1;

range for y = [0 1.]; % Interval of solving for the ODE
A=(Ug+(DeltaU/2))/sqrt(2*h/H) - 1; % value of Zeta'(0)
initial = [ h/H ; A];

velocity = @(t)(Ug+0.5*DeltaU*(1-2*t)); % Wanted profile. Can be anything.

equationfunction = @(t,y)[ y(2) ; -1/(velocity(t))*(-DeltaU)*((1+ y(2))ˆ3 -(1 + y
(2))) ]; % solving for the first time

[t,y] = ode45(equationfunction, range for y, initial);

T=size(t);
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T(1);

error = y(T(1));

n=3;
eps = 10ˆ(-n);

iter =0;

% Now it's important to understand the 'trick'. We want to find the Ug to
% respect Zeta(1)=0. So what we do is : 1) We solve the equation for
% the 1st time. Then we see wether Zeta(1) < 0 (close to 0) or > 0 (close to 0).
% If Zeta(1) < 0 it means that the slope in y = 0 (A = Zeta'(0)) was not
% big enough so we decrease its value by 0.001. And we check wether
% Zeta(1) < 0 (close to 0) or > 0 (close to 0). Now if Zeta(1) > 0 it means that
% the slope in y = 0 (A = Zeta'(0)) was already
% big enough so we decrease its value by 0.001.
% The while loop may not converge so we can add a condition for the loop to
% stop, like adding a counter called iter.

while abs(error) > eps && iter < 1000
if y(T(1)) > 0

Ug = Ug - 0.001;
A=(Ug+(DeltaU/2))/sqrt(2*h/H) - 1; % value of Zeta'(0)
initial = [ h/H ; A];
velocity = @(t)(Ug+0.5*DeltaU*(1-2*t));
equationfunction = @(t,y)[ y(2) ; -1/(velocity(t))*(-DeltaU)*((1+ y(2))ˆ3

-(1 + y(2))) ];
[t,y] = ode45(equationfunction, range for y, initial);
T=size(t);
error = y(T(1));

else y(T(1)) < 0
Ug = Ug + 0.001;
A=(Ug+(DeltaU/2))/sqrt(2*h/H) - 1; % value of Zeta'(0)
initial = [ h/H ; A];
velocity = @(t)(Ug+0.5*DeltaU*(1-2*t));
equationfunction = @(t,y)[ y(2) ; -1/(velocity(t))*(-DeltaU)*((1+ y(2))ˆ3

-(1 + y(2))) ];
[t,y] = ode45(equationfunction, range for y, initial);
T=size(t);
error = y(T(1));

end
iter = iter+1;

end

Ug
y(T(1))
iter

plot(t,y(:,1))
xlabel('y*');
ylabel('Xi');
s1 ='Ug = ';
s3 = num2str(Ug);
s = strcat(s1,32,s3);
legend(s);
title('Numerical solution of the ODE & U {g}')
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The computed solution ξ(y) which respects the boundary conditions leads to the value
U∗g = 0.378 as shown in Fig 2.2.

Figure 2.2: Numerical solution of the ODE to obtain Ug

This application helps understanding the circulation-based modelling for gravity currents.
The main study detailled in the next chapter deals with gravity currents propagating over
complex topography.
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3 Gravity Currents Propagating over
Complex Topography

Understanding and modelling gravity currents flowing over a complex topography is a sub-
ject that has been investigated by Long, Houghton & Kasahara and Baines & Davies.

3.1 Two-layer flow over streamlined obstacle

The following study deals with a stratified fluid flowing over a streamlined obstacle. Let us
consider a two-layer flow such as index 1 refers to the lower layer (denser fluid) and index

2 refers to the upper layer (lighter fluid) cf. figure 3.1. Both fluids are flowing from left to
right at the initial velocity u0.

Figure 3.1: Stratified fluid, ρ2 < ρ1 flowing over a streamlined obstacle with the inflow
velocity u0 in the channel height H.

From experiments led by R. Long [4], four types of flows have been observed.
The lower layer fluid may flow over the topography to lead to a flow without blocking.
When the right conditions are gathered, the lower layer may rise or dip over the crest of the
obstacle, which would lead to, respectively, a supercritical or subcritical regime.
When the conditions are not gathered, the obstacle may partially or completely block the
lower layer fluid.
The goal of the following sections is to determine the conditions for the lower layer fluid to
flow over the topgraphy or become partially or completely blocked.

For a matter of convenience, the topography will be a smooth gaussian obstacle.
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3.2 Flow without blocking

In this section, all notations refer to figure 3.1.

3.2.1 Flow Without Blocking - Theory

Mass conservation leads to equations 3.1 and 3.2.

u1(x)d1(x) = u0d10 (3.1)

u2(x)d2(x) = u0d20 (3.2)

Considering a location x where h(x) 6= 0, the geometry provides equation 3.3

d1(x) + d2(x) + h(x) = H (3.3)

At the interface between the lower and upper layers, the vorticity may be expressed as :

(u2 − u1)(u2 + u1)

2
= g′(d20 − d2) =

1

2
(u2

2 − u2
1) (3.4)

From equation 3.1, equation 3.2 and equation 3.3 we can make the following substitutions :

u1(x) =
u0d10

d1(x)
and u2(x) =

u0d20

d2(x)
=

u0d20

H − h(x)− d1(x)

If we substitute the previous formulae in Eq 3.4 and make the equation dimensionless, we
get :

(
d20

d10

)2

F 2(
1 +

d20

d10
+
h(x)

d10
− d1(x)

d10

)2 −
F 2(

d1(x)

d10

)2 = 2

(
d1(x)

d10
+
h(x)

d10
− 1

)
where F =

u0√
g′d10

(3.5)

For an infinitely deep upper layer
d20

d10
−→ +∞, the first term in Eq 3.5 becomes F 2

Therefore, we obtain the third degree equation where d1(x) is the unknown :

d∗1(x)3+

(
D0(x)− 1− F 2

2

)
d∗1(x)2 +

F 2

2
= 0

where d∗1(x) =
d1(x)

d10
and D0(x) =

h(x)

d10

(3.6)

Eq 3.6 is a third degree polynomial, let’s subsitute d1(x) by X to avoid all confusion.

For third degree equations there are analytical solutions. Also, it is possible to find a
critical line as a function of D0(x) and F , to know wether solution are real or complex.
The method of resolution is the Cardano-Tartaglia Method for third degree equa-
tions.

Equation 3.6 becomes :
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X3 +

(
D0 − 1− F 2

2

)
X2 +

F 2

2
= 0

By using the change of variable X = z − 1

3

(
D0 − 1− F 2

2

)
equation 3.6 becomes :

z3 + pz + q = 0

where p = −1

3

(
D0 − 1− F 2

2

)2

and q =
2

27

(
D0 − 1− F 2

2

)3

+
F 2

2

Let’s substitute z = u+ v thus :

u3 + 3u2v + 3uv2 + v3 + p(u+ v) + q = 0

therefore u3 + v3 + (3uv + p)(u+ v) + q = 0

With the simplification condition 3uv + p = 0 , the previous implies the following system :u
3 + v3 = −q

u3v3 = −p
3

27

Thus u3 and v3 are solutions of the second degree equation Y 2 + qY − p3

27
= 0

The discriminant denoted δ and is by the formula δ = q2 +
4

27
p3

δ =

[
2

27

(
D0 − 1− F 2

2

)3

+
F 2

2

]2

− 4

27

[
1

3

(
D0 − 1− F 2

2

)2
]3

δ =
4

27

(
D0 − 1− F 2

2

)6

+
2F 2

27

[
D0 − 1− F 2

2

]3

+
F 4

4
− 4

272

(
D0 − 1− F 2

2

)6

δ =
F 4

4
+

2F 2

27

[
D0 − 1− F 2

2

]3

δ = F 2

{
F 2

4
+

2

27

[
D0 − 1− F 2

2

]3
}

When δ < 0 there are three real solutions.
When δ = 0 there are three real solutions and two of these are equal.
When δ > 0 there are three solution one is real and two are complex conjugate but this case
is physically not meaningful cf. section 3.3 .

The critical curve (cf. figure 3.2) which separates physically meaningful and meaningless
solutions is obtained when δ = 0. Thus comes the following equation:

D0 = 1− 3

2

3
√
F 2 +

F 2

2
(3.7)
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Figure 3.2: Critical curve in the plane (D0, F )

This critical curve has been found by R.R. Long [4] in 1954, using Bernoulli’s equation and
hydrostatic pressure assumptions, and has also been found by Houghton & Kasahara [5] in
1967 using the steady state shallow water equations.
Figure 3.2 show the regions where the flow without blocking occurs.
When δ > 0, the previous theoretical modelling leads to non-meaningful physical solutions.
Indeed, from experiments by R.R. Long [4], hydraulic jumps are observed, hence the previous
modelling is obsolete when δ > 0, section 3.3 investigates the previous phenomena.

3.2.2 Solutions for δ = 0 over the crest

In this case it is only possible to express the theoretical solution above the obstacle crest.

Indeed if xbump denotes the location of the crest then for x ≤ xb if D0(x) > 1− 3

2
3
√
F 2 +

F 2

2

hydraulic jumps will appear. Let us assume that D0(x) < 1− 3

2
3
√
F 2 +

F 2

2
for x < xb and

D0(xb) = 1− 3

2
3
√
F 2 +

F 2

2
.

Hence the solutions z0, z1, z2 are :

z0 = 2 3

√
−q
2

=
3q

p
and z1 = z2 = − 3

√
−q
2

= −3q

2p

Therefore p = −3F
4
3

4
and q =

F 2

4

Consequently the solutions become :

z0 = −F 2
3 and z1 = z2 =

1

2
F

2
3

Thus the solutions for the layer height above the obstacle crest are :

d∗1(xb)0 = z0 −
1

3

(
D0 − 1− F 2

2

)
= −3

2
F

2
3 and d∗1(xb)1 = d∗1(xb)2 = F

2
3

Only the positive solution is physically meaningful. Numerical simulations to verify these
results are delicate, since (D0, F ) is on the critical curve.
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3.2.3 Solutions for δ < 0

To obtain the solution it is necessary to use complex notation to obtain solution in R. The
solutions can be expressed as follows :

zk = 2

√
−p
3

cos

(
1

3
arccos

(
−q
2

√
27

−p3

)
+

2kπ

3

)
where k ∈ {0, 1, 2}

The previous leads to :

d1(x) =
d10

3

[
D0(x)− 1− F 2

2

]2 cos

1

3
arccos

−
27F 2

4

[
D0(x)− 1− F 2

2

]3 − 1

+
2kπ

3

− 1


(3.8)

The exact solution to the physical problem with boundary condition d(x = 0) = d10 depends
on k.
When F < 1, k = 1 gives the correct solution for a subcritical regime cf. figure 3.3 whereas
k = 2 gives the correct solution when F > 1 cf. figure 3.4

Figure 3.3: d1(x) + h(x) for F = 0.3 , D0 = 0.25 for d10 = 1 k = 1. As expected the denser
fluid dips over the crest since F < 1. The dip is fairly small depending on were the point
(D0, F ) in the region δ < 0 ∩ F < 1

Figure 3.4: d1(x) + h(x) for F = 2.2 , D0 = 0.4 for d10 = 1 k = 2. The denser fluid rises
over the crest since F > 1.
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3.2.4 Flow without blocking - Direct Numerical Simulation

To validate theoretical results on flow without blocking, we use Direct Numerical Simulations
(DNS) with TURBINS [1] (M.M. Nasr-Azadani E. Meiburg) which is an immersed boundary,
Navier - Stokes code for the simulation of gravity and turbidity currents interacting with
complex topographies.
For this configuration the non-parallel version TURBINS2D is used.

DNS for the supercritical case

For the supercritical case, the point selected in figure 3.2 is (D0, F ) = (0.4, 2). Figure 3.5 is
a snapshot1 of the DNS when steady state is reached, as previously mentionned a rise above
the crest is observed.

Figure 3.5: Snapshot of the DNS where the red layer represent d1(x) for F = 2 , D0 = 0.4.

The post-processing of the data allows the plotting on figure 3.6 [d1(x) + h(x)]DNS and
[d1(x) + h(x)]analytical

Figure 3.6: Post-processed data from the DNS. [d1(x) + h(x)]DNS in red and
[d1(x) + h(x)]analytical in blue are plotted.

1Using paraview
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In figure 3.7 the relative uncertainty ∆[d1(x)+h(x)] =

∣∣∣∣∣ [d1(x) + h(x)]analytical − [d1(x) + h(x)]DNS

[d1(x) + h(x)]analytical

∣∣∣∣∣
shows a 30% error between the theoretical model and the DNS, it is mainly due to the no-slip
condition imposed on the topography.

Figure 3.7: Relative uncertainty ∆[d1(x)+h(x)] =

∣∣∣∣∣ [d1(x) + h(x)]analytical − [d1(x) + h(x)]DNS

[d1(x) + h(x)]analytical

∣∣∣∣∣
The free-slip condition imposed on the obstacle allows the separation of the fluid. In figure
3.8 is the velocity streamlines show a recirculation bubble between the fluid and the obstacle.

Figure 3.8: Snapshot of the velocity streamlines from the DNS showing a recirculation
bubble in blue between the fluid and the obstacle.

Nevertheless, the rise over the obstacle is observed and the value d1(xb) + h(xb) is accurate
since ∆[d1(xb)+h(xb)] = 3.87% .

DNS for the subcritical case

The previous DNS domain is used for the subcritical case. For this DNS, (D0, F ) =
(0.25, 03). Once the steady state is reached, cf. figure 3.9, it is possible to compare the
DNS with the analytical value for d1(x) + h(x).
In the subcritical region, we notice that d1(x) gets thinner in the obstacle area and a right-
shift is still observed due to the free-slipping condition imposed on the topography. Figure
3.10 compare [d1(x) + h(x)]DNS in and [d1(x) + h(x)]analytical.
In figure 3.11 the relative untertainty is such as ∆[d1(x)+h(x)] ≤ 8% across the channel, hence
there is a good agreement between the model and the DNS.

Despite the maximum 30% difference for the supercritical case, the theoretical model agrees
well with simulations.
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Figure 3.9: Snapshot of the DNS for F = 0.3 , D0 = 0.025.

Figure 3.10: Post-processed data from the DNS. [d1(x) + h(x)]DNS in red and
[d1(x) + h(x)]analytical in blue are plotted.

Figure 3.11: Relative uncertainty ∆[d1(x)+h(x)] =

∣∣∣∣∣ [d1(x) + h(x)]analytical − [d1(x) + h(x)]DNS

[d1(x) + h(x)]analytical

∣∣∣∣∣
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3.3 Partial Blocking

Experimentally, Long [4] has shown that hydraulic jumps might happen and propagate up-
stream. These hydraulic jumps or bores appear because δ > 0 cf. figure 3.2. Indeed, when
the obstacle is high enough or the inlet Froude number is not enough, it means that at some

point x∗ on the obstacle, the following relation is verified at x∗ : D0(x∗) = 1− 3

2
3
√
F 2 +

F 2

2
.

Hence, discontinuites appear and form the bores.

This section will focus on modelling bores propagating upstream and their velocity, as-
suming that the state is steady; this assumption will be verified and criticized further in the
section with DNS.

3.3.1 Theoretical modelling for partial blocking

The following figure REFERENCE FIGURE will introduce the new variables for the theo-
retical modelling.

Figure 3.12: Bore propagating upstream after partial blocking by the obstacle.

Let us note that in this case, 5 unknowns are present, since the upper layer is infinitely
deep :

� ub the velocity of the bore propagating upstream in this case ub > 0.
� hb the bore height.
� uinb the velocity inside the bore.
� yc the layer height over the crest.
� uc the fluid velocity over the crest.

In the reference frame moving with the upstream propagating bore, it is possible to establish
4 equations.

Between points A and B on figure REFERENCE FIGURE) mass conservation and the
circulation equation provide :
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(u+ ub) d10 = (uinb + ub)hb (3.9)

g′ (hb − d10) =
1

2
(u− uinb) (u+ uinb + 2 ∗ ub) (3.10)

With a similar reasoning between points B and C :

hbuinb = ycuc (3.11)

g′ (hb − (yc + hc)) =
1

2

(
u2
c − u2

inb

)
(3.12)

When partial blocking occurs, unlike the super or subcritical cases, the solutions are not

symmetrical over the crest, which means
dd1

dx
(xcrest) 6= 0.

From vorticity conservation and mass conservation using that
dh

dx
(xcrest) = 0 , the local

Froude number over the crest Fcrest verifies Fcrest = 1.

Therefore the last equation is :

u2
c = g′yc (3.13)

By making equation dimensionless we obtain the following substitutions :

u∗b =
F − y∗

3
2

c

h∗b − 1
(3.14)

u∗c =
√
y∗c (3.15)

u∗inb =
y
∗ 3

2
c

hb
(3.16)

We also obtain a 2× 2 non-linear where hb and y∗c are the unknown to determine :

{
2h∗2b (h∗b − 1)

2
=
(
Fh∗b − y

∗ 3
2

c

)(
Fh∗b (h∗b − 1) + y

∗ 3
2

c (h∗b − 1) + 2h∗b

(
F − y∗

3
2

c

))
2h∗2b (h∗b −D0) = 3h∗2b y

∗
c − y∗3c

(3.17)
By solving this system numerically, it is possible to obtain the value of ub∗, h∗b , y∗c and u∗c
for different values of F and D0.

In the following we will be able to compare theory and DNS for different cases i.e different
(D0, F ).

3.3.2 Partial Blocking - Direct Numerical Simulations

To compare theory and numerical simulations, two points of coordinates (D0, F ) will be
used, (D0, F ) = (0.5, 0.5) and (D0, F ) = (1, 0.25).

By solving the system for (D0, F ) = (0.5, 0.5) we can obtain the different unknowns that
matter and by postprocessing the DNS data we can form the following table :
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(D0, F ) = (0.5, 0.5) theory DNS relative error
h∗b 1.2147 1.2679 4.301%
y∗c 0.5056 0.6251 23.63%
u∗b 0.6544 0.5814 11.15%

For (D0, F ) = (1, 0.25) :

(D0, F ) = (1, 0.25) theory DNS relative error
h∗b 1.2156 1.2379 1.832%
y∗c 0.1444 0.2431 68.38%
u∗b 0.9550 0.8875 1.940%

For y∗c it is difficult to estimate its value by postprocessing the DNS data, which leads to
relative errors that are important. It doesn’t change the accuracy for the determination
of h∗b nor u∗b . Indeed TURBINS [1] uses and immersed boundary method. By using this
method, it is really difficult to impose free-slip condition over the obstacle. Indeed over the
obstacle a no-slip condition is imposed whereas a free-slip condition should be. Therefore
this leads to a biased value of the height over the crest. Physically, this phenomenon can
be interpreted in the DNS by observing the boundary layer over the crest. With the im-
plemented no-slip condition, in TURBINS, a relatively important boundary layer is present
which is also affected by the Reynolds number equal to Re = 250. This mainly contributes
to differences observed for the height over the crest in theory and DNS.

To show in each case that the steady state is reached we can plot the height and velocity
over the crest y∗c & u∗c as functions of time and each parameter reaches an asymptote.

For (D0, F ) = (1, 0.25) cf. figures 3.13 and 3.14

Figure 3.13: yc∗ as a function of time
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Figure 3.14: u∗c as a function of time

Conclusion on partial blocking :

The study led in this section shows that the propagation of bores in a phenomenon which
can be studied in the steady state approximation. It also underlines the consistency of the
modelling in comparison with the DNS. Indeed the very good agreements for the bore height
and velocity allow us to validate the results.
The following section is an interesting extension of the partial blocking. When the height
over the crest reaches 0, it is possible to determine a relation with F and D0 to determine
when complete blocking occurs.
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3.4 Complete Blocking

When the maximum height of the layer over the crest is equal to 0. It is possible to determine
the limit of complete blocking, i.e. a relation between D0 and F .

3.4.1 Complete Blocking and Bore Propagation - Theory

As it might not flow over the obstacle, experiments show a bore formation. This bore would
propagate upstream. The bore propagation can be studied as a quasi-steady phenomenon
after its formation. For the following, let’s call H the channel height that would eventually
tend to infinity in order to have coherence with the previous sections.

Figure 3.15: Bore propagating upstream after complete blocking by the obstacle. ub, hc1
are respectively the bore velocity and its height.

IMPORTANT : Note that in this modelling hc1 is similar to hb in the previous
section.
In the reference frame moving with the bore, the continuity equation in the lower layer is :

(u+ ub) d10 = ubhc1

In the upper layer the continuity equation in the reference frame moving with the bore is :

(u+ ub) d20 = (u+ ub) (H − d10) = (u2 + ub)hc2 = (u2 + ub) (H − hc1)

The vorticity equation along the interface between the lower and upper layers is :

g′ (hc1 − d10) = u2
(u2 + 2ub)

2

Complete blocking occurs when where hc1 = h(xcrest). It is also confirmed by equa-
tion 3.17 when y∗c = 0, which is coherent. By making the previous set of equations
dimensionless leads to the following set of equations :

(F + u∗b) = u∗bD0

(F + u∗b) (H∗ − 1) = (u∗2 + u∗b) (H∗ −D0)

D0 − 1 = u∗2
(u∗2 + 2u∗b)

2

From the first equation

u∗b =
F

D0 − 1
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then from the second

u∗2 =

(
F + F

D0−1

)
(H∗ − 1)

H∗ −D0
− F

D0 − 1

By substituting the previous variables in the third equation, the following critical curve :

F = (D0 − 1)

√√√√√ 2 (D0 − 1)

D2
0

(
H∗ − 1

H∗ −D0

)2

− 1

(3.18)

Equation 3.18 will be used to validate the theoretical results with the DNS results where
the channel height will be finite, its accuracy will be discussed later.

For an infinitely deep upper layer H −→ +∞ , the previous critical curve reaches a limit,
indeed :

lim
H∗→∞

F = lim
H∗→∞

(D0 − 1)

√√√√√ 2 (D0 − 1)

D2
0

(
H∗ − 1

H∗ −D0

)2

− 1

 = (D0 − 1)

√
2

D0 + 1

F = (D0 − 1)

√
2

D0 + 1
= F ∗ (D0, H

∗) (3.19)

Note that equation 3.19 could have been obtained by replacing y∗c = 0 in equa-
tion 3.17. This confirms the good agreement between both modellings.

The following figure 3.16 show the complete blocking region. Equation 3.18 states that
for any given D0, if the inflow Froude number F verifies F ≤ F ∗ (D0, H

∗) then complete
blocking will occur.

Figure 3.16: Complete blocking region under the curve of equation F =

(D0 − 1)

√√√√√ 2 (D0 − 1)

D2
0

(
H∗ − 1

H∗ −D0

)2

− 1
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When (D0, F ) = (4, 1.55) complete blocking is expected cf. figure 3.16. Snapshots in figure
3.17 from the DNS with the previous parameters show a complete blocking and an upstream
bore propagation. The bore propagation can be studied as a quasi-steady state, between in
figure 3.17 when 0 ≤ t∗ ≤ 250, the transient regime remains. After t∗ ≥ 300 the bore has
formed and propagates upstream as show in figure 3.17e where t∗ = 360.

(a) Simulation time t∗ = 0

(b) Simulation time t∗ = 60

(c) Simulation time t∗ = 170

(d) Simulation time t∗ = 250

(e) Simulation time t∗ = 360

Figure 3.17: Snapshots from the DNS for (D0, F ) = (4, 1.55), the height of domain is
H∗ = 80 but for displaying convenience only the obstacle area is shown. Complete blocking
is observed and the bore propagates upstream.

By post-processing the data, we are able to compute the bore velocity when quasi-steady
state is reached. The procedures detects for time frames ti and tj (ti 6= tj), the location
x(ti) and x(tj) in the channel where the layer becomes 20% higher than the inlet height.

Since the bore velocity is steady2 we use the formula u∗bDNS
=

∣∣∣∣x(ti)− x(tj)

ti − tj

∣∣∣∣.
2Based on differents time frames and height percentage, which also confirms the quasi-steady state.
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In this case u∗bDNS
= 0.578. From the first continuity equation u∗b =

F

D0 − 1
. Therefore, the

theoretical value for the bore velocity is u∗bth = 0.517.

Hence, the relative error is ∆u∗b = 100 ·

∣∣∣∣∣u∗bth − u∗bDNS

u∗bth

∣∣∣∣∣ = 11.8%. This difference can

be explained by the fact the bore, here formed, is undular, due to the maximum height of
the obstacle.

3.4.2 Comparison with Houghton & Kasahara for Complete
Blocking

By using the characteristics of the shallow-water equations Houghton & Kasahara [5] could
obtain a limit where complete blocking would occur. Its equation is :

F = (D0 − 1)

√
D0 + 1

2D0
(3.20)

In figure 3.18, the difference between the prediction using the shallow water equations and
the vorticity are shown for the complete blocking.

Figure 3.18: Comparison region for complete blocking. The red curve refers to equation
3.20 whereas the green refers to equation 3.19

Above the red curve, both models predict partial blocking of the fluid. Under the green
curve both models predict complete blocking.The region between the two curves is narrow
until D0 ≥ 3. To compare the two models, we choose to run a DNS for D0 = 4.
For D0 = 4, Houghton & Kasahara have predicted a Froude number FH&K = 2.37 such as if
F < FH&K complete blocking would occur. With the circulation based modelling, the limit
Froude number FCBM where complete blocking would occur is FCBM = 1.89. Therefore
the inflow Froude number will be set as F = 2.3 in the DNS so as to have a 20% difference
with FCBM . Let Φinflow be the flux of the inflow and Φcrest be the flux over the crest of
the obstacle. Both flow are defined as follows

Φ(x∗, t∗) =

∫ +∞

0

u(x∗, y∗, t∗) · c(x∗, y∗, t∗) dy.

where c(x∗, y∗, t∗) is the concentration of the denser fluid and u(x∗, y∗) its horizontal velocity
in the DNS using TURBINS [1].
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Now let us define RΦ(t∗) the percentage of inflow flux and that goes over the crest, defined
as follows :

RΦ(t∗) = 100 · Φcrest

Φinflow
(3.21)

When the flow is steady, RΦ > 20% is the criterion which will determine whether there is
partial or complete blocking. By post-processing the data, we are able to plot RΦ(t∗) in
figure 3.19

Figure 3.19: Ratio RΦ as a function of t∗

When steady state is reached RΦ(t∗) ≈ 70% > 20%. Hence, complete blocking, as predicted
by Houghton & Kasahara, does not occur whereas the circulation based modelling for grav-
ity current predicts complete blocking. This validate the accuracy of our model.

The previous results on the bore velocity and the accuracy of prediction for partial versus
complete blocking validate the theoretical model on complete blocking.
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3.5 Theoretical results on different regimes in a FINITE
HEIGHT CHANNEL

Previously in section 3.2.1, theoretical results were provided when the height of the channel
was assumed to be infinite. These results were provided because equation 3.6 is a third de-
gree polynomial equation. These equations are sovable using the Cardano-Tartaglia method.
Equation 3.5 is a fifth degree equation. The French mathematician Evariste Gallois proved
that it is not possible to solve fifth degree (or more) equations analytically.
Even though analytical solutions can’t be provided, it is still possible to obtain critical
curves to differentiate the regimes.

We remind the reader that the mathematical criterion that allows one to differentiate sub-
critical and supercritical from partial blocking is that the LOCAL Froude number at the
crest is equal to one : F (xc) = 1.

The local Froude number at the crest is : F (xc) =
u(xc)√
g′d1(xc)

=
u∗(xc)√
d∗1(xc)

The contuinity equation at the crest is u(xc)d
∗
1(xc) = ud10 therefore u∗(xc) =

F

d∗1(xc)

By combining these equations d∗1(xc) verifies : F (xc)
√
d∗1(xc) =

F

d∗1(xc)

So when F (xc) = 1 it means that :

d∗1(xc) = F
2
3 (3.22)

Equation 3.22 also corroborates the results in subsection 3.2.2.
In order to obtain critical curves for different heights of the channel we have written an
algorithm to plot the solutions that verify condition 3.22.

3.5.1 Details of the algorithm

Unlike the infinite upper layer case, it is not possible to determine an analytical critical
equation like equation 3.22.

The algorithm consist in solving equation 3.5 numerically at the crest for enough points
of coordinates (D0, F ) in the domain. When solution d∗1(xc) is obtained, the algorithm
must verify whether condition 3.22 is verified. If it is the case then d∗1(xc) is stored in an
array.

The following algorithm has been implemented with Matlab.

Listing 3.1: Matlab Algorithm to plot the critical curves

close all;
clear all;

n=1;

H=zeros(1,3); % Height of the channel 10ˆn times bigger than d {10}

for i=1:3
H(1,i)=10ˆ(i); % Different heights of the channel : 10, 100, 1000

end
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size square grid=1; % (In the (D 0,F) plane, we scan the whole region D 0=0 to 1
and F=0 to 2*1

p=2;

step=size square grid/(10ˆp);
step grid=step; % precision to scan the region, there is a point every "step"

length=size square grid/step grid;

% display(length);

F 1=zeros(1,2*length);

D 0=zeros(1,length);

for i=1:length
D 0(1,i)=(i-1)*step;

end

for i=1:2*length
F 1(1,i)=(i-1)*step;

end

y c1=zeros(length,2*length);
y c2=zeros(length,2*length);
y c3=zeros(length,2*length);

yc 1=1.5; %initial conditions to solve numerically the following equation
yc 2=1.6;
yc 3=1.55;

x1=0;
x2=0;
x3=0;

tol=0.05;

x=zeros(1,length);
y=zeros(1,length);

for i=1:length
y(1,i)=(i-1)*step;

end

for i=1:length
x(1,i)=1-1.5*(y(1,i))ˆ(2/3)+0.5*y(1,i)ˆ2;

end

% hold on
% plot(y,x,'k');
% plot(y,-x+2,'k');
%
% break;

for k=1:3 % Different channel heights
for j=1:2*length % For the Froude number axis

for i=1:length % For the obstacle axis
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fun2=@(x)( xˆ5 + ( D 0(1,i)-1 + 2*(D 0(1,i)-H(1,k)))*xˆ4 + (2*(D 0(1,
i)-H(1,k))*(D 0(1,i)-1) + (D 0(1,i)-H(1,k))ˆ2 )*xˆ3 + (0.5*F 1(1,j
)ˆ2*(1-(H(1,k)-1)ˆ2) + (D 0(1,i)-H(1,k))ˆ2*(D 0(1,i)-1))*xˆ2 + (
D 0(1,i)-H(1,k))*F 1(1,j)*x +0.5*F 1(1,j)ˆ2*(D 0(1,i)-H(1,k))ˆ2 );
% Equation to solve to obtain solutions.

if k==1
x1=fsolve(fun2,yc 1);
y c1(i,j)=x1;

elseif k==2
x2=fsolve(fun2,yc 2);
y c2(i,j)=x2;

else
x3=fsolve(fun2,yc 3);
y c3(i,j)=x3;

end

end
end

end

crit 1=zeros(length,2*length);

crit 2=zeros(length,2*length);

crit 3=zeros(length,2*length);

infinite crit=zeros(length,2*length);

for i=1:length
for j=1:2*length

crit 1(i,j)=y c1(i,j)*(F 1(1,j))ˆ(-2/3)-1; % Critical curve for H=10
crit 2(i,j)=y c2(i,j)*(F 1(1,j))ˆ(-2/3)-1; % Critical curve for H=100
crit 3(i,j)=y c3(i,j)*(F 1(1,j))ˆ(-2/3)-1; % Critical curve for H=1000

infinite crit(i,j)=D 0(1,i)-1+1.5*(F 1(1,j))ˆ(2/3)-0.5*(F 1(1,j))ˆ(2); %
Critical curve for H=+infty

end
end

% Creating the arrays to plot a contour : critical curves plotting

v=[0,0];

x=zeros(1,3*length);
comp block 1=zeros(1,3*length);
comp block 2=zeros(1,3*length);
comp block 3=zeros(1,3*length);
comp block infinite=zeros(1,3*length);

for i=1:3*length
x(1,i)=1+(i-1)*step;
comp block 1(1,i)=(x(1,i)-1)*sqrt((2*(H(1,1)-x(1,i))ˆ2)/((x(1,i)ˆ2)*(H(1,1)-1)

ˆ2 - (H(1,1)-x(1,i))ˆ2 )); % complete blocking H=10
comp block 2(1,i)=(x(1,i)-1)*sqrt((2*(H(1,2)-x(1,i))ˆ2)/((x(1,i)ˆ2)*(H(1,2)-1)

ˆ2 - (H(1,2)-x(1,i))ˆ2 )); % complete blocking H=100
comp block 3(1,i)=(x(1,i)-1)*sqrt((2*(H(1,3)-x(1,i))ˆ2)/((x(1,i)ˆ2)*(H(1,3)-1)

ˆ2 - (H(1,3)-x(1,i))ˆ2 )); % complete blocking H=1000
comp block infinite(1,i)=(x(1,i)-1)*sqrt(2/(x(1,i)+1)); % complete blocking H

=+infty
end

% Plotting the curves

hold on
contour(D 0,F 1,crit 1',v,'k');
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plot(x,comp block 1,'k')
contour(D 0,F 1,crit 2',v,'b');
plot(x,comp block 2,'b')
contour(D 0,F 1,crit 3',v,'g');
plot(x,comp block 3,'g')
contour(D 0,F 1,infinite crit',v,'r');
plot(x,comp block infinite,'r');

Hence, the critical curves are obtained in 3.20.

Figure 3.20: Critical Curves for different heights

3.5.2 Summary on the different flowing regimes

The following figure 3.21 sums up the four different flowing regimes for different heights.
We remind the reader that these regimes are :

� Subcritical
� Supercritial
� Partially blocked
� Completely blocked

37



Figure 3.21: Summary of different regimes
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4 Conclusion : Work and Experience

Work :

To conclude this (mainly) theoretical work, we’ve seen that agreements between theory
and numerical simulations were close. The remaining unsolved problems, such as imple-
menting new boundary conditions for the DNS code, are still under further investigation,
though my time in UCSB is over. Indeed, the shape of the theoretical results were similar
to the numerical ones.
Also in this work we can extend this application to non-Boussinesq flow and even add shear
and a density gradtient.

In this report I haven’t mentionned the project I was working on for one month where
I had to study a lock-exchange configuration where two fluids would flow over topography.
The study led to a 12 × 12 non-linear system which was impossible to solve analytically. We
could obtain results with the Levenberg-Marquardt algorithm but it was far from satisfying.
Since my time here was limited, we decided to change my research project to the study of
flows over complex topography still with gravity currents.

So far, I had to use MATLAB and C, for the DNS. It helped me doing all the post-processing,
initializing the DNS and creating the uniform and non-uniform grids. I also learned how
to use a unix environment by using terminals and secure-shell connections. These are the
tools that are essential for research in the CFD field.

Experience :

My work is far from being achieved, but so far this research internship really confirmed
my will to do research in fluid mechanics in the future and go on a PhD program after my
Master’s degree.

During a seminar, I could meet Patrick Huerre who is the creator of the Master’s de-
gree ”Fluid Dynamics : Fundamentals ans Applications” at Ecole Polytechnique. I could
exchange a few words on my work and future education which was really helpful.

I really have enjoyed the time I have spent in this laboratory under the supervision of
Prof. Eckart Meiburg and Mohamad Nasr-Azadani. They were tremendous tutors and
mentors in this project here.
Despite an accident that led to a knee injury, I fought my way back to UCSB after a short
trip in France to have treatment. Mainly, due to time limitations, leading this project to a
potential article was no easy task.
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